import gradio as gr import torch import torchvision.transforms as transforms from torchvision.models import resnet50 from PIL import Image from huggingface_hub import hf_hub_download device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = resnet50(pretrained=False) model.fc = torch.nn.Linear(model.fc.in_features, 14) # Adjust for 14 classes model_path = hf_hub_download(repo_id="iamomtiwari/resnet50-crop-disease", filename="resnet50_model_hf.pt") model.load_state_dict(torch.load(model_path, map_location=device)) model.to(device) model.eval() # Define image transformations transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Class labels class_labels = [ "Corn___Common_Rust", "Corn___Gray_Leaf_Spot", "Corn___Healthy", "Corn___Northern_Leaf_Blight", "Rice___Brown_Spot", "Rice___Healthy", "Rice___Leaf_Blast", "Rice___Neck_Blast", "Wheat___Brown_Rust", "Wheat___Healthy", "Wheat___Yellow_Rust", "Sugarcane__Red_Rot", "Sugarcane__Healthy", "Sugarcane__Bacterial Blight" ] # Prediction function def predict(image): try: image = transform(image).unsqueeze(0).to(device) with torch.no_grad(): outputs = model(image) _, predicted_class = torch.max(outputs, 1) return class_labels[predicted_class.item()] except Exception as e: return f"Error: {str(e)}" # Gradio interface interface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3), title="Crop Disease Classification", description="Upload an image to classify crop diseases using ResNet-50." ) interface.launch()