iamrobotbear commited on
Commit
125e1ba
·
1 Parent(s): 1d153c2

really fucking annoyed

Browse files
Files changed (1) hide show
  1. app.py +50 -32
app.py CHANGED
@@ -8,11 +8,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
8
  import tensorflow as tf
9
  import tensorflow_hub as hub
10
  import io
11
- import os
12
- import numpy as np
13
  from sklearn.metrics.pairwise import cosine_similarity
14
- import tempfile
15
- import shutil
16
  import logging
17
 
18
  # Configure logging
@@ -76,43 +73,64 @@ def save_dataframe_to_csv(df):
76
  # Return the file path (no need to reopen the file with "rb" mode)
77
  return temp_file_path
78
 
79
- def process_images_and_statements(image_file):
80
- with tempfile.NamedTemporaryFile(delete=False) as temp_file:
81
- shutil.copyfileobj(image_file, temp_file)
82
-
83
- image = Image.open(temp_file.name)
84
- image = np.array(image)
85
  logging.info('Starting process_images_and_statements')
86
 
87
- # Generate the image caption
88
- generated_caption = caption_image(image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
- # Match the statements
91
- matched_statements = match_statements(image, statements)
 
92
 
93
- os.unlink(temp_file.name) # Remove the temporary file
 
 
 
 
 
 
 
94
 
95
- return generated_caption, matched_statements
 
96
 
97
- # Define Gradio interface
98
- image_input = gr.inputs.Image(type="numpy", label="Upload Image")
99
- outputs = [
100
- gr.outputs.Image(type="pil", label="Annotated Image"),
101
- gr.outputs.Textbox(label="Matched Statements"),
102
- ]
 
 
 
 
 
 
103
 
104
  iface = gr.Interface(
105
  fn=process_images_and_statements,
106
  inputs=image_input,
107
- outputs=outputs,
108
- title="Image Captioning and Matching",
109
- description="Upload an image to generate a caption for the image and match the statements.",
110
- theme='sudeepshouche/minimalist'
111
  )
112
 
113
- # Launch Gradio app
114
- iface.launch(debug=True)
115
-
116
-
117
- # Launch Gradio app
118
- iface.launch(debug=True)
 
8
  import tensorflow as tf
9
  import tensorflow_hub as hub
10
  import io
 
 
11
  from sklearn.metrics.pairwise import cosine_similarity
12
+ import tempfile # Add this import
 
13
  import logging
14
 
15
  # Configure logging
 
73
  # Return the file path (no need to reopen the file with "rb" mode)
74
  return temp_file_path
75
 
76
+ # Main function to perform image captioning and image-text matching
77
+ def process_images_and_statements(image):
 
 
 
 
78
  logging.info('Starting process_images_and_statements')
79
 
80
+ # Generate image caption for the uploaded image using git-large-r-textcaps
81
+ caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
82
+
83
+ # Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
84
+ weight_textual_similarity = 0.5
85
+ weight_statement = 0.5
86
+
87
+ # Initialize an empty list to store the results
88
+ results_list = []
89
+
90
+ # Loop through each predefined statement
91
+ for statement in statements:
92
+ # Compute textual similarity between caption and statement
93
+ textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100
94
+
95
+ # Compute ITM score for the image-statement pair
96
+ itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100
97
 
98
+ # Combine the two scores using a weighted average
99
+ final_score = ((weight_textual_similarity * textual_similarity_score) +
100
+ (weight_statement * itm_score_statement))
101
 
102
+ # Append the result to the results_list
103
+ results_list.append({
104
+ 'Statement': statement,
105
+ 'Generated Caption': caption, # Include the generated caption
106
+ 'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places
107
+ 'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places
108
+ 'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places
109
+ })
110
 
111
+ # Convert the results_list to a DataFrame using pandas.concat
112
+ results_df = pd.concat([pd.DataFrame([result]) for result in results_list], ignore_index=True)
113
 
114
+ logging.info('Finished process_images_and_statements')
115
+
116
+ # Save results_df to a CSV file
117
+ csv_results = save_dataframe_to_csv(results_df)
118
+
119
+ # Return both the DataFrame and the CSV data for the Gradio interface
120
+ return results_df, csv_results # <--- Return results_df and csv_results
121
+
122
+ # Gradio interface
123
+ image_input = gr.inputs.Image()
124
+ output_df = gr.outputs.Dataframe(type="pandas", label="Results")
125
+ output_csv = gr.outputs.File(label="Download CSV")
126
 
127
  iface = gr.Interface(
128
  fn=process_images_and_statements,
129
  inputs=image_input,
130
+ outputs=[output_df, output_csv], # Include both the DataFrame and CSV file outputs
131
+ title="Image Captioning and Image-Text Matching",
132
+ theme='sudeepshouche/minimalist',
133
+ css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
134
  )
135
 
136
+ iface.launch()