Spaces:
Build error
Build error
iamrobotbear
commited on
Commit
·
125e1ba
1
Parent(s):
1d153c2
really fucking annoyed
Browse files
app.py
CHANGED
@@ -8,11 +8,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
|
|
8 |
import tensorflow as tf
|
9 |
import tensorflow_hub as hub
|
10 |
import io
|
11 |
-
import os
|
12 |
-
import numpy as np
|
13 |
from sklearn.metrics.pairwise import cosine_similarity
|
14 |
-
import tempfile
|
15 |
-
import shutil
|
16 |
import logging
|
17 |
|
18 |
# Configure logging
|
@@ -76,43 +73,64 @@ def save_dataframe_to_csv(df):
|
|
76 |
# Return the file path (no need to reopen the file with "rb" mode)
|
77 |
return temp_file_path
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
shutil.copyfileobj(image_file, temp_file)
|
82 |
-
|
83 |
-
image = Image.open(temp_file.name)
|
84 |
-
image = np.array(image)
|
85 |
logging.info('Starting process_images_and_statements')
|
86 |
|
87 |
-
# Generate the image
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
iface = gr.Interface(
|
105 |
fn=process_images_and_statements,
|
106 |
inputs=image_input,
|
107 |
-
outputs=outputs
|
108 |
-
title="Image Captioning and Matching",
|
109 |
-
|
110 |
-
|
111 |
)
|
112 |
|
113 |
-
|
114 |
-
iface.launch(debug=True)
|
115 |
-
|
116 |
-
|
117 |
-
# Launch Gradio app
|
118 |
-
iface.launch(debug=True)
|
|
|
8 |
import tensorflow as tf
|
9 |
import tensorflow_hub as hub
|
10 |
import io
|
|
|
|
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
+
import tempfile # Add this import
|
|
|
13 |
import logging
|
14 |
|
15 |
# Configure logging
|
|
|
73 |
# Return the file path (no need to reopen the file with "rb" mode)
|
74 |
return temp_file_path
|
75 |
|
76 |
+
# Main function to perform image captioning and image-text matching
|
77 |
+
def process_images_and_statements(image):
|
|
|
|
|
|
|
|
|
78 |
logging.info('Starting process_images_and_statements')
|
79 |
|
80 |
+
# Generate image caption for the uploaded image using git-large-r-textcaps
|
81 |
+
caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
|
82 |
+
|
83 |
+
# Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
|
84 |
+
weight_textual_similarity = 0.5
|
85 |
+
weight_statement = 0.5
|
86 |
+
|
87 |
+
# Initialize an empty list to store the results
|
88 |
+
results_list = []
|
89 |
+
|
90 |
+
# Loop through each predefined statement
|
91 |
+
for statement in statements:
|
92 |
+
# Compute textual similarity between caption and statement
|
93 |
+
textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100
|
94 |
+
|
95 |
+
# Compute ITM score for the image-statement pair
|
96 |
+
itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100
|
97 |
|
98 |
+
# Combine the two scores using a weighted average
|
99 |
+
final_score = ((weight_textual_similarity * textual_similarity_score) +
|
100 |
+
(weight_statement * itm_score_statement))
|
101 |
|
102 |
+
# Append the result to the results_list
|
103 |
+
results_list.append({
|
104 |
+
'Statement': statement,
|
105 |
+
'Generated Caption': caption, # Include the generated caption
|
106 |
+
'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places
|
107 |
+
'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places
|
108 |
+
'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places
|
109 |
+
})
|
110 |
|
111 |
+
# Convert the results_list to a DataFrame using pandas.concat
|
112 |
+
results_df = pd.concat([pd.DataFrame([result]) for result in results_list], ignore_index=True)
|
113 |
|
114 |
+
logging.info('Finished process_images_and_statements')
|
115 |
+
|
116 |
+
# Save results_df to a CSV file
|
117 |
+
csv_results = save_dataframe_to_csv(results_df)
|
118 |
+
|
119 |
+
# Return both the DataFrame and the CSV data for the Gradio interface
|
120 |
+
return results_df, csv_results # <--- Return results_df and csv_results
|
121 |
+
|
122 |
+
# Gradio interface
|
123 |
+
image_input = gr.inputs.Image()
|
124 |
+
output_df = gr.outputs.Dataframe(type="pandas", label="Results")
|
125 |
+
output_csv = gr.outputs.File(label="Download CSV")
|
126 |
|
127 |
iface = gr.Interface(
|
128 |
fn=process_images_and_statements,
|
129 |
inputs=image_input,
|
130 |
+
outputs=[output_df, output_csv], # Include both the DataFrame and CSV file outputs
|
131 |
+
title="Image Captioning and Image-Text Matching",
|
132 |
+
theme='sudeepshouche/minimalist',
|
133 |
+
css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
|
134 |
)
|
135 |
|
136 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|