iamrobotbear commited on
Commit
35e0000
·
1 Parent(s): 101cd41

going back to pandas.concat

Browse files
Files changed (1) hide show
  1. app.py +111 -67
app.py CHANGED
@@ -1,92 +1,136 @@
1
  import gradio as gr
 
 
 
 
 
 
2
  import tensorflow as tf
3
  import tensorflow_hub as hub
4
- import numpy as np
5
- import pandas as pd
6
- from transformers import GitProcessor, GitModel, GitConfig
7
- from PIL import Image
8
- import logging
 
 
 
 
 
 
 
 
 
 
9
 
10
- # Load models and processors
11
- git_config = GitConfig.from_pretrained("microsoft/git-large-r")
12
- git_processor_large_textcaps = GitProcessor.from_pretrained("microsoft/git-large-r")
13
- git_model_large_textcaps = GitModel.from_pretrained("microsoft/git-large-r")
14
- itm_model = hub.load("https://tfhub.dev/google/LaViT/1")
15
- use_model = hub.load("https://tfhub.dev/google/universal-sentence-encoder-large/5")
 
 
 
 
 
 
16
 
17
  # Read statements from the external file 'statements.txt'
18
  with open('statements.txt', 'r') as file:
19
  statements = file.read().splitlines()
20
 
21
- # Function to generate image caption
 
 
 
 
 
 
 
 
 
 
 
22
  def generate_caption(processor, model, image):
23
- inputs = processor(images=image, return_tensors="pt")
24
- outputs = model(**inputs)
25
- caption = processor.batch_decode(outputs.logits.argmax(-1), skip_special_tokens=True)
26
- return caption[0]
 
 
27
 
28
- # Function to compute textual similarity
29
- def compute_textual_similarity(caption, statement):
30
- captions_embeddings = use_model([caption])[0].numpy()
31
- statements_embeddings = use_model([statement])[0].numpy()
32
- similarity_score = np.inner(captions_embeddings, statements_embeddings)
33
- return similarity_score[0]
34
 
35
- # Function to compute ITM score
36
- def compute_itm_score(image, statement):
37
- image_features = itm_model(image)
38
- statement_features = use_model([statement])[0].numpy()
39
- similarity_score = np.inner(image_features, statement_features)
40
- return similarity_score[0][0]
41
 
42
- # Function to save DataFrame to CSV
43
- def save_dataframe_to_csv(df):
44
- csv_data = df.to_csv(index=False)
45
- return csv_data
46
-
47
- # Main function to perform image captioning and image-text matching for multiple images
48
- def process_images_and_statements(files):
49
- all_results_list = []
50
-
51
- # If 'files' is a list, convert it to a dictionary
52
- if isinstance(files, list):
53
- files = {f.name: f for f in files}
54
-
55
- for file_name, image_file in files.items():
56
- # Convert the image file to a PIL image
57
- image = Image.open(image_file)
58
-
59
- caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
60
- for statement in statements:
61
- textual_similarity_score = compute_textual_similarity(caption, statement) * 100
62
- itm_score_statement = compute_itm_score(image, statement) * 100
63
- final_score = 0.5 * textual_similarity_score + 0.5 * itm_score_statement
64
- all_results_list.append({
65
- 'Image File Name': file_name, # Include the image file name
66
- 'Statement': statement,
67
- 'Generated Caption': caption,
68
- 'Textual Similarity Score': f"{textual_similarity_score:.2f}%",
69
- 'ITM Score': f"{itm_score_statement:.2f}%",
70
- 'Final Combined Score': f"{final_score:.2f}%"
71
- })
72
- results_df = pd.concat([pd.DataFrame([result]) for result in all_results_list], ignore_index=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  csv_results = save_dataframe_to_csv(results_df)
74
- return results_df, csv_results
75
 
76
- # Gradio interface with File input to receive
77
- # Gradio interface with File input to receive multiple images and file names
78
- image_input = gr.inputs.File(file_count="multiple", type="file", label="Upload Images")
 
 
79
  output_df = gr.outputs.Dataframe(type="pandas", label="Results")
80
  output_csv = gr.outputs.File(label="Download CSV")
81
 
82
  iface = gr.Interface(
83
  fn=process_images_and_statements,
84
  inputs=image_input,
85
- outputs=[output_df, output_csv],
86
  title="Image Captioning and Image-Text Matching",
87
  theme='sudeepshouche/minimalist',
88
- css=".output { flex-direction: column; } .output .outputs { width: 100%; }", # Custom CSS
89
- capture_session=True, # Capture errors and exceptions in Gradio interface
90
  )
91
 
92
- iface.launch(debug=True)
 
1
  import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ import pandas as pd
5
+ from lavis.models import load_model_and_preprocess
6
+ from lavis.processors import load_processor
7
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
8
  import tensorflow as tf
9
  import tensorflow_hub as hub
10
+ import io
11
+ from sklearn.metrics.pairwise import cosine_similarity
12
+ import tempfile # Add this import
13
+ import logging
14
+
15
+ # Configure logging
16
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
17
+
18
+ # Load model and preprocessors for Image-Text Matching (LAVIS)
19
+ device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
20
+ model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True)
21
+
22
+ # Load tokenizer and model for Image Captioning (TextCaps)
23
+ git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
24
+ git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
25
 
26
+ # Load Universal Sentence Encoder model for textual similarity calculation
27
+ embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
28
+
29
+ # Define a function to compute textual similarity between caption and statement
30
+ def compute_textual_similarity(caption, statement):
31
+ # Convert caption and statement into sentence embeddings
32
+ caption_embedding = embed([caption])[0].numpy()
33
+ statement_embedding = embed([statement])[0].numpy()
34
+
35
+ # Calculate cosine similarity between sentence embeddings
36
+ similarity_score = cosine_similarity([caption_embedding], [statement_embedding])[0][0]
37
+ return similarity_score
38
 
39
  # Read statements from the external file 'statements.txt'
40
  with open('statements.txt', 'r') as file:
41
  statements = file.read().splitlines()
42
 
43
+ # Function to compute ITM scores for the image-statement pair
44
+ def compute_itm_score(image, statement):
45
+ logging.info('Starting compute_itm_score')
46
+ pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
47
+ img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device)
48
+ # Pass the statement text directly to model_itm
49
+ itm_output = model_itm({"image": img, "text_input": statement}, match_head="itm")
50
+ itm_scores = torch.nn.functional.softmax(itm_output, dim=1)
51
+ score = itm_scores[:, 1].item()
52
+ logging.info('Finished compute_itm_score')
53
+ return score
54
+
55
  def generate_caption(processor, model, image):
56
+ logging.info('Starting generate_caption')
57
+ inputs = processor(images=image, return_tensors="pt").to(device)
58
+ generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
59
+ generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
60
+ logging.info('Finished generate_caption')
61
+ return generated_caption
62
 
63
+ def save_dataframe_to_csv(df):
64
+ csv_buffer = io.StringIO()
65
+ df.to_csv(csv_buffer, index=False)
66
+ csv_string = csv_buffer.getvalue()
 
 
67
 
68
+ # Save the CSV string to a temporary file
69
+ with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv") as temp_file:
70
+ temp_file.write(csv_string)
71
+ temp_file_path = temp_file.name # Get the file path
 
 
72
 
73
+ # Return the file path (no need to reopen the file with "rb" mode)
74
+ return temp_file_path
75
+
76
+ # Main function to perform image captioning and image-text matching
77
+ def process_images_and_statements(image):
78
+ logging.info('Starting process_images_and_statements')
79
+
80
+ # Generate image caption for the uploaded image using git-large-r-textcaps
81
+ caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
82
+
83
+ # Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
84
+ weight_textual_similarity = 0.5
85
+ weight_statement = 0.5
86
+
87
+ # Initialize an empty list to store the results
88
+ results_list = []
89
+
90
+ # Loop through each predefined statement
91
+ for statement in statements:
92
+ # Compute textual similarity between caption and statement
93
+ textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100
94
+
95
+ # Compute ITM score for the image-statement pair
96
+ itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100
97
+
98
+ # Combine the two scores using a weighted average
99
+ final_score = ((weight_textual_similarity * textual_similarity_score) +
100
+ (weight_statement * itm_score_statement))
101
+
102
+ # Append the result to the results_list
103
+ results_list.append({
104
+ 'Statement': statement,
105
+ 'Generated Caption': caption, # Include the generated caption
106
+ 'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places
107
+ 'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places
108
+ 'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places
109
+ })
110
+
111
+ # Convert the results_list to a DataFrame using pandas.concat
112
+ results_df = pd.concat([pd.DataFrame([result]) for result in results_list], ignore_index=True)
113
+
114
+ logging.info('Finished process_images_and_statements')
115
+
116
+ # Save results_df to a CSV file
117
  csv_results = save_dataframe_to_csv(results_df)
 
118
 
119
+ # Return both the DataFrame and the CSV data for the Gradio interface
120
+ return results_df, csv_results # <--- Return results_df and csv_results
121
+
122
+ # Gradio interface
123
+ image_input = gr.inputs.Image()
124
  output_df = gr.outputs.Dataframe(type="pandas", label="Results")
125
  output_csv = gr.outputs.File(label="Download CSV")
126
 
127
  iface = gr.Interface(
128
  fn=process_images_and_statements,
129
  inputs=image_input,
130
+ outputs=[output_df, output_csv], # Include both the DataFrame and CSV file outputs
131
  title="Image Captioning and Image-Text Matching",
132
  theme='sudeepshouche/minimalist',
133
+ css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
 
134
  )
135
 
136
+ iface.launch()