iamrobotbear commited on
Commit
8f5362f
·
1 Parent(s): e17785f

add generated captions to the dataframe

Browse files
Files changed (1) hide show
  1. app.py +13 -10
app.py CHANGED
@@ -93,29 +93,30 @@ def process_images_and_statements(image):
93
  weight_statement = 0.5
94
 
95
  # Initialize an empty DataFrame with column names
96
- results_df = pd.DataFrame(columns=['Statement', 'Textual Similarity Score', 'ITM Score', 'Final Combined Score'])
97
 
98
  # Loop through each predefined statement
99
  for statement in statements:
100
  # Compute textual similarity between caption and statement
101
- textual_similarity_score = compute_textual_similarity(caption, statement)
102
 
103
  # Compute ITM score for the image-statement pair
104
- itm_score_statement = compute_itm_score(image, statement)
105
 
106
  # Combine the two scores using a weighted average
107
- #final_score = (weight_textual_similarity * textual_similarity_score) + (weight_statement * itm_score_statement)
108
  final_score = ((weight_textual_similarity * textual_similarity_score) +
109
- (weight_statement * itm_score_statement)) * 100 # Multiply by 100
110
 
111
- # Append the result to the DataFrame
112
  results_df = results_df.append({
113
  'Statement': statement,
114
- 'Textual Similarity Score': textual_similarity_score * 100, # Multiply by 100
115
- 'ITM Score': itm_score_statement * 100, # Multiply by 100
116
- 'Final Combined Score': final_score
 
117
  }, ignore_index=True)
118
 
 
119
  logging.info('Finished process_images_and_statements')
120
 
121
  # Return the DataFrame directly as output (no need to convert to HTML)
@@ -134,4 +135,6 @@ iface = gr.Interface(
134
  css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
135
  )
136
 
137
- iface.launch()
 
 
 
93
  weight_statement = 0.5
94
 
95
  # Initialize an empty DataFrame with column names
96
+ results_df = pd.DataFrame(columns=['Statement', 'Generated Caption', 'Textual Similarity Score', 'ITM Score', 'Final Combined Score'])
97
 
98
  # Loop through each predefined statement
99
  for statement in statements:
100
  # Compute textual similarity between caption and statement
101
+ textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100
102
 
103
  # Compute ITM score for the image-statement pair
104
+ itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100
105
 
106
  # Combine the two scores using a weighted average
 
107
  final_score = ((weight_textual_similarity * textual_similarity_score) +
108
+ (weight_statement * itm_score_statement))
109
 
110
+ # Append the result to the DataFrame with formatted percentage values
111
  results_df = results_df.append({
112
  'Statement': statement,
113
+ 'Generated Caption': caption, # Include the generated caption
114
+ 'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places
115
+ 'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places
116
+ 'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places
117
  }, ignore_index=True)
118
 
119
+ logging.info
120
  logging.info('Finished process_images_and_statements')
121
 
122
  # Return the DataFrame directly as output (no need to convert to HTML)
 
135
  css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
136
  )
137
 
138
+ iface.launch()
139
+
140
+