Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
import pandas as pd | |
from lavis.models import load_model_and_preprocess | |
from lavis.processors import load_processor | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import io | |
from sklearn.metrics.pairwise import cosine_similarity | |
import tempfile # Add this import | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Load model and preprocessors for Image-Text Matching (LAVIS) | |
device = torch.device("cuda") if torch.cuda.is_available() else "cpu" | |
model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True) | |
# Load tokenizer and model for Image Captioning (TextCaps) | |
git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps") | |
git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps") | |
# Load Universal Sentence Encoder model for textual similarity calculation | |
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4") | |
# Define a function to compute textual similarity between caption and statement | |
def compute_textual_similarity(caption, statement): | |
# Convert caption and statement into sentence embeddings | |
caption_embedding = embed([caption])[0].numpy() | |
statement_embedding = embed([statement])[0].numpy() | |
# Calculate cosine similarity between sentence embeddings | |
similarity_score = cosine_similarity([caption_embedding], [statement_embedding])[0][0] | |
return similarity_score | |
# Read statements from the external file 'statements.txt' | |
with open('statements.txt', 'r') as file: | |
statements = file.read().splitlines() | |
# Function to compute ITM scores for the image-statement pair | |
def compute_itm_score(image, statement): | |
logging.info('Starting compute_itm_score') | |
pil_image = Image.fromarray(image.astype('uint8'), 'RGB') | |
img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device) | |
# Pass the statement text directly to model_itm | |
itm_output = model_itm({"image": img, "text_input": statement}, match_head="itm") | |
itm_scores = torch.nn.functional.softmax(itm_output, dim=1) | |
score = itm_scores[:, 1].item() | |
logging.info('Finished compute_itm_score') | |
return score | |
def generate_caption(processor, model, image): | |
logging.info('Starting generate_caption') | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) | |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
logging.info('Finished generate_caption') | |
return generated_caption | |
def save_dataframe_to_csv(df): | |
csv_buffer = io.StringIO() | |
df.to_csv(csv_buffer, index=False) | |
csv_string = csv_buffer.getvalue() | |
# Save the CSV string to a temporary file | |
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv") as temp_file: | |
temp_file.write(csv_string) | |
temp_file_path = temp_file.name # Get the file path | |
# Return the file path (no need to reopen the file with "rb" mode) | |
return temp_file_path | |
# Main function to perform image captioning and image-text matching | |
def process_images_and_statements(image): | |
logging.info('Starting process_images_and_statements') | |
# Generate image caption for the uploaded image using git-large-r-textcaps | |
caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image) | |
# Define weights for combining textual similarity score and image-statement ITM score (adjust as needed) | |
weight_textual_similarity = 0.5 | |
weight_statement = 0.5 | |
# Initialize an empty list to store the results | |
results_list = [] | |
# Loop through each predefined statement | |
for statement in statements: | |
# Compute textual similarity between caption and statement | |
textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100 | |
# Compute ITM score for the image-statement pair | |
itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100 | |
# Combine the two scores using a weighted average | |
final_score = ((weight_textual_similarity * textual_similarity_score) + | |
(weight_statement * itm_score_statement)) | |
# Append the result to the results_list | |
results_list.append({ | |
'Statement': statement, | |
'Generated Caption': caption, # Include the generated caption | |
'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places | |
'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places | |
'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places | |
}) | |
# Convert the results_list to a DataFrame using pandas.concat | |
results_df = pd.concat([pd.DataFrame([result]) for result in results_list], ignore_index=True) | |
logging.info('Finished process_images_and_statements') | |
# Save results_df to a CSV file | |
csv_results = save_dataframe_to_csv(results_df) | |
# Return both the DataFrame and the CSV data for the Gradio interface | |
return results_df, csv_results # <--- Return results_df and csv_results | |
# Gradio interface | |
image_input = gr.inputs.Image() | |
output_df = gr.outputs.Dataframe(type="pandas", label="Results") | |
output_csv = gr.outputs.File(label="Download CSV") | |
iface = gr.Interface( | |
fn=process_images_and_statements, | |
inputs=image_input, | |
outputs=[output_df, output_csv], # Include both the DataFrame and CSV file outputs | |
title="Image Captioning and Image-Text Matching", | |
theme='sudeepshouche/minimalist', | |
css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS | |
) | |
iface.launch() |