import gradio as gr import torch from PIL import Image import pandas as pd from lavis.models import load_model_and_preprocess from lavis.processors import load_processor from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor import tensorflow as tf import tensorflow_hub as hub import io from sklearn.metrics.pairwise import cosine_similarity import tempfile # Add this import import logging # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Load model and preprocessors for Image-Text Matching (LAVIS) device = torch.device("cuda") if torch.cuda.is_available() else "cpu" model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True) # Load tokenizer and model for Image Captioning (TextCaps) git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps") git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps") # Load Universal Sentence Encoder model for textual similarity calculation embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4") # Define a function to compute textual similarity between caption and statement def compute_textual_similarity(caption, statement): # Convert caption and statement into sentence embeddings caption_embedding = embed([caption])[0].numpy() statement_embedding = embed([statement])[0].numpy() # Calculate cosine similarity between sentence embeddings similarity_score = cosine_similarity([caption_embedding], [statement_embedding])[0][0] return similarity_score # Read statements from the external file 'statements.txt' with open('statements.txt', 'r') as file: statements = file.read().splitlines() # Function to compute ITM scores for the image-statement pair def compute_itm_score(image, statement): logging.info('Starting compute_itm_score') pil_image = Image.fromarray(image.astype('uint8'), 'RGB') img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device) # Pass the statement text directly to model_itm itm_output = model_itm({"image": img, "text_input": statement}, match_head="itm") itm_scores = torch.nn.functional.softmax(itm_output, dim=1) score = itm_scores[:, 1].item() logging.info('Finished compute_itm_score') return score def generate_caption(processor, model, image): logging.info('Starting generate_caption') inputs = processor(images=image, return_tensors="pt").to(device) generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] logging.info('Finished generate_caption') return generated_caption def save_dataframe_to_csv(df): csv_buffer = io.StringIO() df.to_csv(csv_buffer, index=False) csv_string = csv_buffer.getvalue() # Save the CSV string to a temporary file with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv") as temp_file: temp_file.write(csv_string) temp_file_path = temp_file.name # Get the file path # Return the file path (no need to reopen the file with "rb" mode) return temp_file_path # Main function to perform image captioning and image-text matching def process_images_and_statements(image): logging.info('Starting process_images_and_statements') # Generate image caption for the uploaded image using git-large-r-textcaps caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image) # Define weights for combining textual similarity score and image-statement ITM score (adjust as needed) weight_textual_similarity = 0.5 weight_statement = 0.5 # Initialize an empty list to store the results results_list = [] # Loop through each predefined statement for statement in statements: # Compute textual similarity between caption and statement textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100 # Compute ITM score for the image-statement pair itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100 # Combine the two scores using a weighted average final_score = ((weight_textual_similarity * textual_similarity_score) + (weight_statement * itm_score_statement)) # Append the result to the results_list results_list.append({ 'Statement': statement, 'Generated Caption': caption, # Include the generated caption 'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places 'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places 'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places }) # Convert the results_list to a DataFrame using pandas.concat results_df = pd.concat([pd.DataFrame([result]) for result in results_list], ignore_index=True) logging.info('Finished process_images_and_statements') # Save results_df to a CSV file csv_results = save_dataframe_to_csv(results_df) # Return both the DataFrame and the CSV data for the Gradio interface return results_df, csv_results # <--- Return results_df and csv_results # Gradio interface image_input = gr.inputs.Image() output_df = gr.outputs.Dataframe(type="pandas", label="Results") output_csv = gr.outputs.File(label="Download CSV") iface = gr.Interface( fn=process_images_and_statements, inputs=image_input, outputs=[output_df, output_csv], # Include both the DataFrame and CSV file outputs title="Image Captioning and Image-Text Matching", theme='sudeepshouche/minimalist', css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS ) iface.launch()