File size: 5,602 Bytes
2912643 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import os
import sys
import time
import traceback
import webbrowser
# uncomment below to ensure CPU install only uses CPU
# os.environ['CUDA_VISIBLE_DEVICES'] = ''
print('__file__: %s' % __file__)
path1 = os.path.dirname(os.path.abspath(__file__))
sys.path.append(path1)
base_path = os.path.dirname(path1)
sys.path.append(base_path)
os.environ['PYTHONPATH'] = path1
print('path1', path1, flush=True)
os.environ['NLTK_DATA'] = os.path.join(base_path, './nltk_data')
path_list = [os.environ['PATH'],
os.path.join(base_path, 'poppler/Library/bin/'),
os.path.join(base_path, 'poppler/Library/lib/'),
os.path.join(base_path, 'Tesseract-OCR'),
os.path.join(base_path, 'ms-playwright'),
os.path.join(base_path, 'ms-playwright/chromium-1076/chrome-win'),
os.path.join(base_path, 'ms-playwright/ffmpeg-1009'),
os.path.join(base_path, 'ms-playwright/firefox-1422/firefox'),
os.path.join(base_path, 'ms-playwright/webkit-1883'),
os.path.join(base_path, 'rubberband/')]
os.environ['PATH'] = ';'.join(path_list)
print(os.environ['PATH'])
import shutil, errno
def copy_tree(src, dst):
try:
shutil.copytree(src, dst)
except OSError as exc: # python >2.5
if exc.errno in (errno.ENOTDIR, errno.EINVAL):
shutil.copy(src, dst)
else: raise
def setup_paths():
for sub in ['src', 'iterators', 'gradio_utils', 'metrics', 'models', '.']:
path2 = os.path.join(base_path, '..', sub)
if os.path.isdir(path2):
if sub == 'models' and os.path.isfile(os.path.join(path2, 'human.jpg')):
os.environ['H2OGPT_MODEL_BASE'] = path2
sys.path.append(path2)
print(path2, flush=True)
path2 = os.path.join(path1, '..', sub)
if os.path.isdir(path2):
if sub == 'models' and os.path.isfile(os.path.join(path2, 'human.jpg')):
os.environ['H2OGPT_MODEL_BASE'] = path2
sys.path.append(path2)
print(path2, flush=True)
# for app, avoid forbidden for web access
if os.getenv('H2OGPT_MODEL_BASE'):
base0 = os.environ['H2OGPT_MODEL_BASE']
if 'Programs' in os.environ['H2OGPT_MODEL_BASE']:
os.environ['H2OGPT_MODEL_BASE'] = os.environ['H2OGPT_MODEL_BASE'].replace('Programs', 'Temp/gradio/')
shutil.rmtree(os.environ['H2OGPT_MODEL_BASE'])
if os.path.isfile(os.path.join(base0, 'human.jpg')):
copy_tree(base0, os.environ['H2OGPT_MODEL_BASE'])
from importlib.metadata import distribution, PackageNotFoundError
try:
dtorch = distribution('torch')
assert dtorch is not None
have_torch = True
torch_version = dtorch.version
except (PackageNotFoundError, AssertionError):
have_torch = False
torch_version = ''
def _main():
setup_paths()
os.environ['h2ogpt_block_gradio_exit'] = 'False'
os.environ['h2ogpt_score_model'] = ''
try:
from pynvml import nvmlInit, nvmlDeviceGetCount
nvmlInit()
deviceCount = nvmlDeviceGetCount()
except Exception as e:
print("No GPUs detected by NVML: %s" % str(e))
deviceCount = 0
need_get_gpu_torch = False
if have_torch and deviceCount > 0:
if '+cu' not in torch_version:
need_get_gpu_torch = True
elif not have_torch and deviceCount > 0:
need_get_gpu_torch = True
print("Torch Status: have torch: %s need get gpu torch: %s CVD: %s GPUs: %s" % (have_torch, need_get_gpu_torch, os.getenv('CUDA_VISIBLE_DEVICES'), deviceCount))
auto_install_torch_gpu = False
import sys
if auto_install_torch_gpu and (not have_torch or need_get_gpu_torch) and sys.platform == "win32":
print("Installing Torch")
# for one-click, don't have torch installed, install now
import subprocess
import sys
def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
if os.getenv('TORCH_WHEEL'):
print("Installing Torch from %s" % os.getenv('TORCH_WHEEL'))
install(os.getenv('TORCH_WHEEL'))
else:
if need_get_gpu_torch:
wheel_file = "https://h2o-release.s3.amazonaws.com/h2ogpt/torch-2.1.2%2Bcu118-cp310-cp310-win_amd64.whl"
print("Installing Torch from %s" % wheel_file)
install(wheel_file)
# assume cpu torch part of install
#else:
# wheel_file = "https://h2o-release.s3.amazonaws.com/h2ogpt/torch-2.1.2-cp310-cp310-win_amd64.whl"
# print("Installing Torch from %s" % wheel_file)
# install(wheel_file)
import importlib
importlib.invalidate_caches()
import pkg_resources
importlib.reload(pkg_resources) # re-load because otherwise cache would be bad
from generate import entrypoint_main as main_h2ogpt
main_h2ogpt()
server_name = os.getenv('h2ogpt_server_name', os.getenv('H2OGPT_SERVER_NAME', 'localhost'))
server_port = os.getenv('GRADIO_SERVER_PORT', str(7860))
url = "http://%s:%s" % (server_name, server_port)
webbrowser.open(url)
while True:
time.sleep(10000)
def main():
try:
_main()
except BaseException as e:
with open('h2ogpt_exception.log', 'at') as f:
f.write(traceback.format_exc())
time.sleep(10)
raise
time.sleep(10)
if __name__ == "__main__":
main()
|