File size: 16,662 Bytes
b585c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import logging
import os
import tempfile
import time
from typing import Dict, Iterator, Optional, Tuple
from langchain.document_loaders.base import BaseBlobParser
from langchain.document_loaders.blob_loaders import Blob
from langchain.document_loaders.generic import GenericLoader
from langchain.schema import Document
logger = logging.getLogger(__name__)
class OpenAIWhisperParser(BaseBlobParser):
"""Transcribe and parse audio files.
Audio transcription is with OpenAI Whisper model."""
def __init__(self, api_key: Optional[str] = None):
self.api_key = api_key
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
import io
try:
from openai import OpenAI
if self.api_key:
client = OpenAI(api_key=self.api_key)
else:
client = OpenAI()
except ImportError:
raise ImportError(
"openai package not found, please install it with "
"`pip install openai`"
)
try:
from pydub import AudioSegment
except ImportError:
raise ImportError(
"pydub package not found, please install it with " "`pip install pydub`"
)
# Audio file from disk
audio = AudioSegment.from_file(blob.path)
# Define the duration of each chunk in minutes
# Need to meet 25MB size limit for Whisper API
chunk_duration = 20
chunk_duration_ms = chunk_duration * 60 * 1000
# Split the audio into chunk_duration_ms chunks
for split_number, i in enumerate(range(0, len(audio), chunk_duration_ms)):
# Audio chunk
chunk = audio[i: i + chunk_duration_ms]
file_obj = io.BytesIO(chunk.export(format="mp3").read())
if blob.source is not None:
file_obj.name = blob.source + f"_part_{split_number}.mp3"
else:
file_obj.name = f"part_{split_number}.mp3"
# Transcribe
print(f"Transcribing part {split_number + 1}!")
attempts = 0
while attempts < 3:
try:
transcript = client.audio.transcribe("whisper-1", file_obj)
break
except Exception as e:
attempts += 1
print(f"Attempt {attempts} failed. Exception: {str(e)}")
time.sleep(5)
else:
print("Failed to transcribe after 3 attempts.")
continue
yield Document(
page_content=transcript.text,
metadata={"source": blob.source, "chunk": split_number},
)
class OpenAIWhisperParserLocal(BaseBlobParser):
"""Transcribe and parse audio files with OpenAI Whisper model.
Audio transcription with OpenAI Whisper model locally from transformers.
Parameters:
device - device to use
NOTE: By default uses the gpu if available,
if you want to use cpu, please set device = "cpu"
lang_model - whisper model to use, for example "openai/whisper-medium"
forced_decoder_ids - id states for decoder in multilanguage model,
usage example:
from transformers import WhisperProcessor
processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="french",
task="transcribe")
forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="french",
task="translate")
"""
def __init__(
self,
device: str = 'gpu',
device_id: int = 0,
lang_model: Optional[str] = None,
forced_decoder_ids: Optional[Tuple[Dict]] = None,
use_better=True,
use_faster=False,
):
"""Initialize the parser.
Args:
device: device to use.
lang_model: whisper model to use, for example "openai/whisper-medium".
Defaults to None.
forced_decoder_ids: id states for decoder in a multilanguage model.
Defaults to None.
"""
try:
from transformers import pipeline
except ImportError:
raise ImportError(
"transformers package not found, please install it with "
"`pip install transformers`"
)
try:
import torch
except ImportError:
raise ImportError(
"torch package not found, please install it with " "`pip install torch`"
)
# set device, cpu by default check if there is a GPU available
if device == "cpu":
self.device = "cpu"
if lang_model is not None:
self.lang_model = lang_model
print("WARNING! Model override. Using model: ", self.lang_model)
else:
# unless overridden, use the small base model on cpu
self.lang_model = "openai/whisper-base"
else:
if torch.cuda.is_available():
self.device = "cuda"
# check GPU memory and select automatically the model
mem = torch.cuda.get_device_properties(self.device).total_memory / (
1024 ** 2
)
if mem < 5000:
rec_model = "openai/whisper-base"
elif mem < 7000:
rec_model = "openai/whisper-small"
elif mem < 12000:
rec_model = "openai/whisper-medium"
else:
rec_model = "openai/whisper-large-v3"
# check if model is overridden
if lang_model is not None:
self.lang_model = lang_model
print("WARNING! Model override. Might not fit in your GPU")
else:
self.lang_model = rec_model
else:
"cpu"
print("Using the following model: ", self.lang_model)
# load model for inference
if self.device == 'cpu':
device_map = {"", 'cpu'}
else:
device_map = {"": 'cuda:%d' % device_id} if device_id >= 0 else {'': 'cuda'}
# https://huggingface.co/blog/asr-chunking
self.pipe = pipeline(
"automatic-speech-recognition",
model=self.lang_model,
chunk_length_s=30,
stride_length_s=5,
batch_size=8,
device_map=device_map,
)
if use_better:
# even faster if not doing real time ASR
# stride_length_s=5, batch_size=8
try:
from optimum.bettertransformer import BetterTransformer
self.pipe.model = BetterTransformer.transform(self.pipe.model, use_flash_attention_2=True)
except Exception as e:
print("No optimum, not using BetterTransformer: %s" % str(e), flush=True)
if use_faster and have_use_faster and self.lang_model in ['openai/whisper-large-v2',
'openai/whisper-large-v3']:
self.pipe.model.to('cpu')
del self.pipe.model
clear_torch_cache()
print("Using faster_whisper", flush=True)
# has to come here, no framework and no config for model
# pip install git+https://github.com/SYSTRAN/faster-whisper.git
from faster_whisper import WhisperModel
model_size = "large-v3" if self.lang_model == 'openai/whisper-large-v3' else "large-v2"
# Run on GPU with FP16
model = WhisperModel(model_size, device=self.device, compute_type="float16")
# or run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
# model = WhisperModel(model_size, device="cpu", compute_type="int8")
self.pipe.model = model
if forced_decoder_ids is not None:
try:
self.pipe.model.config.forced_decoder_ids = forced_decoder_ids
except Exception as exception_text:
logger.info(
"Unable to set forced_decoder_ids parameter for whisper model"
f"Text of exception: {exception_text}"
"Therefore whisper model will use default mode for decoder"
)
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
import io
try:
from pydub import AudioSegment
except ImportError:
raise ImportError(
"pydub package not found, please install it with `pip install pydub`"
)
try:
import librosa
except ImportError:
raise ImportError(
"librosa package not found, please install it with "
"`pip install librosa`"
)
file = str(blob.path)
if any([file.endswith(x) for x in ['.mp4', '.mpeg', '.mpg']]):
import audioread.ffdec # Use ffmpeg decoder
aro = audioread.ffdec.FFmpegAudioFile(blob.path)
y, sr = librosa.load(aro, sr=16000)
else:
# Audio file from disk
audio = AudioSegment.from_file(blob.path)
file_obj = io.BytesIO(audio.export(format="mp3").read())
# Transcribe
print(f"Transcribing part {blob.path}!")
y, sr = librosa.load(file_obj, sr=16000)
prediction = self.pipe(y.copy(), batch_size=8)["text"]
yield Document(
page_content=prediction,
metadata={"source": blob.source},
)
"""
Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py
But accepts preloaded model to avoid slowness in use and CUDA forking issues
Loader that loads image captions
By default, the loader utilizes the pre-trained BLIP image captioning model.
https://huggingface.co/Salesforce/blip-image-captioning-base
"""
from typing import List, Union, Any, Tuple
import requests
from langchain.docstore.document import Document
from langchain.document_loaders import ImageCaptionLoader
from utils import get_device, NullContext, clear_torch_cache, have_use_faster, makedirs
from importlib.metadata import distribution, PackageNotFoundError
try:
assert distribution('bitsandbytes') is not None
have_bitsandbytes = True
except (PackageNotFoundError, AssertionError):
have_bitsandbytes = False
class H2OAudioCaptionLoader(ImageCaptionLoader):
"""Loader that loads the transcriptions of audio"""
def __init__(self, path_audios: Union[str, List[str]] = None,
asr_model='openai/whisper-medium',
asr_gpu=True,
gpu_id='auto',
use_better=True,
use_faster=False,
):
super().__init__(path_audios)
self.audio_paths = path_audios
self.model = None
self.asr_model = asr_model
self.asr_gpu = asr_gpu
self.context_class = NullContext
self.gpu_id = gpu_id if isinstance(gpu_id, int) else 0
self.device = 'cpu'
self.device_map = {"": 'cpu'}
self.set_context()
self.use_better = use_better
self.use_faster = use_faster
self.files_out = []
def set_context(self):
if get_device() == 'cuda' and self.asr_gpu:
import torch
n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0
if n_gpus > 0:
self.context_class = torch.device
self.device = 'cuda'
else:
self.device = 'cpu'
else:
self.device = 'cpu'
if get_device() == 'cuda' and self.asr_gpu:
if self.gpu_id == 'auto':
# blip2 has issues with multi-GPU. Error says need to somehow set language model in device map
# device_map = 'auto'
self.gpu_id = 0
self.device_map = {"": 'cuda:%d' % self.gpu_id}
else:
self.gpu_id = -1
self.device_map = {"": 'cpu'}
def load_model(self):
try:
import transformers
except ImportError:
raise ValueError(
"`transformers` package not found, please install with "
"`pip install transformers`."
)
self.set_context()
if self.model:
if str(self.model.pipe.model.device) != self.device_map['']:
self.model.pipe.model.to(self.device_map[''])
return self
import torch
with torch.no_grad():
with self.context_class(self.device):
context_class_cast = NullContext if self.device == 'cpu' else torch.autocast
with context_class_cast(self.device):
self.model = OpenAIWhisperParserLocal(device=self.device,
device_id=self.gpu_id,
lang_model=self.asr_model,
use_better=self.use_better,
use_faster=self.use_faster,
)
return self
def set_audio_paths(self, path_audios: Union[str, List[str]]):
"""
Load from a list of audio files
"""
if isinstance(path_audios, str):
self.audio_paths = [path_audios]
else:
self.audio_paths = path_audios
def load(self, from_youtube=False) -> List[Document]:
if self.model is None:
self.load_model()
# https://librosa.org/doc/main/generated/librosa.load.html
if from_youtube:
save_dir = tempfile.mkdtemp()
makedirs(save_dir, exist_ok=True)
youtube_loader = YoutubeAudioLoader(self.audio_paths, save_dir)
loader = GenericLoader(youtube_loader, self.model)
docs = loader.load()
self.files_out = youtube_loader.files_out
return docs
else:
docs = []
for fil in self.audio_paths:
loader = GenericLoader.from_filesystem(
os.path.dirname(fil),
glob=os.path.basename(fil),
parser=self.model)
docs += loader.load()
return docs
def unload_model(self):
if hasattr(self, 'model') and hasattr(self.model, 'pipe') and hasattr(self.model.pipe.model, 'cpu'):
self.model.pipe.model.cpu()
clear_torch_cache()
from typing import Iterable, List
from langchain.document_loaders.blob_loaders import FileSystemBlobLoader
from langchain.document_loaders.blob_loaders.schema import Blob, BlobLoader
class YoutubeAudioLoader(BlobLoader):
"""Load YouTube urls as audio file(s)."""
def __init__(self, urls: List[str], save_dir: str):
if not isinstance(urls, list):
raise TypeError("urls must be a list")
self.urls = urls
self.save_dir = save_dir
self.files_out = []
def yield_blobs(self) -> Iterable[Blob]:
"""Yield audio blobs for each url."""
try:
import yt_dlp
except ImportError:
raise ImportError(
"yt_dlp package not found, please install it with "
"`pip install yt_dlp`"
)
# Use yt_dlp to download audio given a YouTube url
ydl_opts = {
"format": "m4a/bestaudio/best",
"noplaylist": True,
"outtmpl": self.save_dir + "/%(title)s.%(ext)s",
"postprocessors": [
{
"key": "FFmpegExtractAudio",
"preferredcodec": "m4a",
}
],
}
for url in self.urls:
# Download file
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download(url)
# Yield the written blobs
loader = FileSystemBlobLoader(self.save_dir, glob="*.m4a")
self.files_out = [os.path.join(self.save_dir, f) for f in os.listdir(self.save_dir)]
for blob in loader.yield_blobs():
yield blob
|