File size: 9,287 Bytes
b585c7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py
But accepts preloaded model to avoid slowness in use and CUDA forking issues

Loader that loads image captions
By default, the loader utilizes the pre-trained BLIP image captioning model.
https://huggingface.co/Salesforce/blip-image-captioning-base

"""
from typing import List, Union, Any, Tuple

import requests
from langchain.docstore.document import Document
from langchain.document_loaders import ImageCaptionLoader

from utils import get_device, NullContext, clear_torch_cache

from importlib.metadata import distribution, PackageNotFoundError

try:
    assert distribution('bitsandbytes') is not None
    have_bitsandbytes = True
except (PackageNotFoundError, AssertionError):
    have_bitsandbytes = False


class H2OImageCaptionLoader(ImageCaptionLoader):
    """Loader that loads the captions of an image"""

    def __init__(self, path_images: Union[str, List[str]] = None,
                 blip_processor: str = None,
                 blip_model: str = None,
                 caption_gpu=True,
                 load_in_8bit=True,
                 # True doesn't seem to work, even though https://huggingface.co/Salesforce/blip2-flan-t5-xxl#in-8-bit-precision-int8
                 load_half=False,
                 load_gptq='',
                 load_awq='',
                 load_exllama=False,
                 use_safetensors=False,
                 revision=None,
                 min_new_tokens=20,
                 max_tokens=50,
                 gpu_id='auto'):
        if blip_model is None or blip_model is None:
            blip_processor = "Salesforce/blip-image-captioning-base"
            blip_model = "Salesforce/blip-image-captioning-base"

        super().__init__(path_images, blip_processor, blip_model)
        self.blip_processor = blip_processor
        self.blip_model = blip_model
        self.processor = None
        self.model = None
        self.caption_gpu = caption_gpu
        self.context_class = NullContext
        self.load_in_8bit = load_in_8bit and have_bitsandbytes  # only for blip2
        self.load_half = load_half
        self.load_gptq = load_gptq
        self.load_awq = load_awq
        self.load_exllama = load_exllama
        self.use_safetensors = use_safetensors
        self.revision = revision
        self.gpu_id = gpu_id
        # default prompt
        self.prompt = "image of"
        self.min_new_tokens = min_new_tokens
        self.max_tokens = max_tokens

        self.device = 'cpu'
        self.device_map = {"": 'cpu'}
        self.set_context()

    def set_context(self):
        if get_device() == 'cuda' and self.caption_gpu:
            import torch
            n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0
            if n_gpus > 0:
                self.context_class = torch.device
                self.device = 'cuda'
            else:
                self.device = 'cpu'
        else:
            self.device = 'cpu'
        if self.caption_gpu:
            if self.gpu_id == 'auto':
                # blip2 has issues with multi-GPU.  Error says need to somehow set language model in device map
                # device_map = 'auto'
                self.device_map = {"": 0}
            else:
                if self.device == 'cuda':
                    self.device_map = {"": 'cuda:%d' % self.gpu_id}
                else:
                    self.device_map = {"": 'cpu'}
        else:
            self.device_map = {"": 'cpu'}

    def load_model(self):
        try:
            import transformers
        except ImportError:
            raise ValueError(
                "`transformers` package not found, please install with "
                "`pip install transformers`."
            )
        self.set_context()
        if self.model:
            if not self.load_in_8bit and str(self.model.device) != self.device_map['']:
                self.model.to(self.device)
            return self
        import torch
        with torch.no_grad():
            with self.context_class(self.device):
                context_class_cast = NullContext if self.device == 'cpu' else torch.autocast
                with context_class_cast(self.device):
                    if 'blip2' in self.blip_processor.lower():
                        from transformers import Blip2Processor, Blip2ForConditionalGeneration
                        if self.load_half and not self.load_in_8bit:
                            self.processor = Blip2Processor.from_pretrained(self.blip_processor,
                                                                            device_map=self.device_map).half()
                            self.model = Blip2ForConditionalGeneration.from_pretrained(self.blip_model,
                                                                                       device_map=self.device_map).half()
                        else:
                            self.processor = Blip2Processor.from_pretrained(self.blip_processor,
                                                                            load_in_8bit=self.load_in_8bit,
                                                                            device_map=self.device_map,
                                                                            )
                            self.model = Blip2ForConditionalGeneration.from_pretrained(self.blip_model,
                                                                                       load_in_8bit=self.load_in_8bit,
                                                                                       device_map=self.device_map)
                    else:
                        from transformers import BlipForConditionalGeneration, BlipProcessor
                        self.load_half = False  # not supported
                        self.processor = BlipProcessor.from_pretrained(self.blip_processor, device_map=self.device_map)
                        self.model = BlipForConditionalGeneration.from_pretrained(self.blip_model,
                                                                                  device_map=self.device_map)
        return self

    def set_image_paths(self, path_images: Union[str, List[str]]):
        """
        Load from a list of image files
        """
        if isinstance(path_images, str):
            self.image_paths = [path_images]
        else:
            self.image_paths = path_images

    def load(self, prompt=None) -> List[Document]:
        if self.processor is None or self.model is None:
            self.load_model()
        results = []
        for path_image in self.image_paths:
            caption, metadata = self._get_captions_and_metadata(
                model=self.model, processor=self.processor, path_image=path_image,
                prompt=prompt,
            )
            doc = Document(page_content=caption, metadata=metadata)
            results.append(doc)

        return results

    def unload_model(self):
        if hasattr(self, 'model') and hasattr(self.model, 'cpu'):
            self.model.cpu()
            clear_torch_cache()

    def _get_captions_and_metadata(
            self, model: Any, processor: Any, path_image: str,
            prompt=None) -> Tuple[str, dict]:
        """
        Helper function for getting the captions and metadata of an image
        """
        if prompt is None:
            prompt = self.prompt
        try:
            from PIL import Image
        except ImportError:
            raise ValueError(
                "`PIL` package not found, please install with `pip install pillow`"
            )

        try:
            if path_image.startswith("http://") or path_image.startswith("https://"):
                image = Image.open(requests.get(path_image, stream=True).raw).convert(
                    "RGB"
                )
            else:
                image = Image.open(path_image).convert("RGB")
        except Exception:
            raise ValueError(f"Could not get image data for {path_image}")

        import torch
        with torch.no_grad():
            with self.context_class(self.device):
                context_class_cast = NullContext if self.device == 'cpu' else torch.autocast
                with context_class_cast(self.device):
                    if self.load_half:
                        # FIXME: RuntimeError: "slow_conv2d_cpu" not implemented for 'Half'
                        inputs = processor(image, prompt, return_tensors="pt")  # .half()
                    else:
                        inputs = processor(image, prompt, return_tensors="pt")
                    min_length = len(prompt) // 4 + self.min_new_tokens
                    self.max_tokens = max(self.max_tokens, min_length)
                    inputs.to(model.device)
                    output = model.generate(**inputs, min_length=min_length, max_length=self.max_tokens)

                    caption: str = processor.decode(output[0], skip_special_tokens=True)
                    prompti = caption.find(prompt)
                    if prompti >= 0:
                        caption = caption[prompti + len(prompt):]
                    metadata: dict = {"image_path": path_image}

        return caption, metadata