File size: 11,811 Bytes
b585c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
"""
Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py
But accepts preloaded model to avoid slowness in use and CUDA forking issues
Loader that uses H2O DocTR OCR models to extract text from images
"""
from typing import List, Union, Any, Tuple, Optional
import requests
import torch
from langchain.docstore.document import Document
from langchain.document_loaders import ImageCaptionLoader
import numpy as np
from utils import get_device, clear_torch_cache, NullContext
from doctr.utils.common_types import AbstractFile
class H2OOCRLoader(ImageCaptionLoader):
"""Loader that extracts text from images"""
def __init__(self, path_images: Union[str, List[str]] = None, layout_aware=False, gpu_id=None):
super().__init__(path_images)
self._ocr_model = None
self.layout_aware = layout_aware
self.gpu_id = gpu_id if isinstance(gpu_id, int) and gpu_id >= 0 else 0
self.device = 'cpu'
# ensure self.device set
self.set_context()
def set_context(self):
if get_device() == 'cuda':
import torch
n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0
if n_gpus > 0:
self.context_class = torch.device
if self.gpu_id is not None:
self.device = "cuda:%d" % self.gpu_id
else:
self.device = 'cuda'
else:
self.device = 'cpu'
else:
self.device = 'cpu'
def load_model(self):
try:
from weasyprint import HTML # to avoid warning
from doctr.models.zoo import ocr_predictor
except ImportError:
raise ValueError(
"`doctr` package not found, please install with "
"`pip install git+https://github.com/h2oai/doctr.git`."
)
if self._ocr_model:
self._ocr_model = self._ocr_model.to(self.device)
return self
self.set_context()
self._ocr_model = ocr_predictor(det_arch="db_resnet50", reco_arch="crnn_efficientnetv2_mV2",
pretrained=True).to(self.device)
return self
def unload_model(self):
if self._ocr_model and hasattr(self._ocr_model.det_predictor.model, 'cpu'):
self._ocr_model.det_predictor.model.cpu()
clear_torch_cache()
if self._ocr_model and hasattr(self._ocr_model.reco_predictor.model, 'cpu'):
self._ocr_model.reco_predictor.model.cpu()
clear_torch_cache()
if self._ocr_model and hasattr(self._ocr_model, 'cpu'):
self._ocr_model.cpu()
clear_torch_cache()
def set_document_paths(self, document_paths: Union[str, List[str]]):
"""
Load from a list of image files
"""
if isinstance(document_paths, str):
self.document_paths = [document_paths]
else:
self.document_paths = document_paths
def load(self, prompt=None) -> List[Document]:
if self._ocr_model is None:
self.load_model()
context_class = torch.cuda.device(self.gpu_id) if 'cuda' in str(self.device) else NullContext
results = []
with context_class:
for document_path in self.document_paths:
caption, metadata = self._get_captions_and_metadata(
model=self._ocr_model, document_path=document_path
)
doc = Document(page_content=" \n".join(caption), metadata=metadata)
results.append(doc)
return results
@staticmethod
def pad_resize_image(image):
import cv2
L = 1024
H = 1024
# Load the image
Li, Hi = image.shape[1], image.shape[0]
# Calculate the aspect ratio
aspect_ratio_original = Li / Hi
aspect_ratio_final = L / H
# Check the original size and determine the processing needed
if Li < L and Hi < H:
# Padding
padding_x = (L - Li) // 2
padding_y = (H - Hi) // 2
image = cv2.copyMakeBorder(image, padding_y, padding_y, padding_x, padding_x, cv2.BORDER_CONSTANT, value=[0, 0, 0])
elif Li > L and Hi > H:
# Resizing
if aspect_ratio_original < aspect_ratio_final:
# The image is taller than the target aspect ratio
new_height = H
new_width = int(H * aspect_ratio_original)
else:
# The image is wider than the target aspect ratio
new_width = L
new_height = int(L / aspect_ratio_original)
image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
else:
# Intermediate case, resize without cropping
if aspect_ratio_original < aspect_ratio_final:
# The image is taller than the target aspect ratio
new_height = H
new_width = int(H * aspect_ratio_original)
else:
# The image is wider than the target aspect ratio
new_width = L
new_height = int(L / aspect_ratio_original)
image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
padding_x = (L - new_width) // 2
padding_y = (H - new_height) // 2
image = cv2.copyMakeBorder(image, padding_y, padding_y, padding_x, padding_x, cv2.BORDER_CONSTANT, value=[0, 0, 0])
return image
def _get_captions_and_metadata(
self, model: Any, document_path: str) -> Tuple[list, dict]:
"""
Helper function for getting the captions and metadata of an image
"""
try:
from doctr.io import DocumentFile
except ImportError:
raise ValueError(
"`doctr` package not found, please install with "
"`pip install git+https://github.com/h2oai/doctr.git`."
)
try:
if document_path.lower().endswith(".pdf"):
# load at roughly 300 dpi
images = read_pdf(document_path)
else:
images = DocumentFile.from_images(document_path)
except Exception:
raise ValueError(f"Could not get image data for {document_path}")
document_words = []
shapes = []
for image in images:
shape0 = str(image.shape)
image = self.pad_resize_image(image)
# debug, to see effect of pad-resize
# import cv2
# cv2.imwrite('new1.png', image)
shape1 = str(image.shape)
ocr_output = model([image])
page_words = []
page_boxes = []
for block_num, block in enumerate(ocr_output.pages[0].blocks):
for line_num, line in enumerate(block.lines):
for word_num, word in enumerate(line.words):
if not (word.value or "").strip():
continue
page_words.append(word.value)
page_boxes.append(
[word.geometry[0][0], word.geometry[0][1], word.geometry[1][0], word.geometry[1][1]])
if self.layout_aware:
ids = boxes_sort(page_boxes)
texts = [page_words[i] for i in ids]
text_boxes = [page_boxes[i] for i in ids]
page_words = space_layout(texts=texts, boxes=text_boxes)
else:
page_words = " ".join(page_words)
document_words.append(page_words)
shapes.append(dict(shape0=shape0, shape1=shape1))
metadata: dict = {"image_path": document_path, 'shape': str(shapes)}
return document_words, metadata
def boxes_sort(boxes):
""" From left top to right bottom
Params:
boxes: [[x1, y1, x2, y2], [x1, y1, x2, y2], ...]
"""
sorted_id = sorted(range(len(boxes)), key=lambda x: (boxes[x][1]))
# sorted_boxes = [boxes[id] for id in sorted_id]
return sorted_id
def is_same_line(box1, box2):
"""
Params:
box1: [x1, y1, x2, y2]
box2: [x1, y1, x2, y2]
"""
box1_midy = (box1[1] + box1[3]) / 2
box2_midy = (box2[1] + box2[3]) / 2
if box1_midy < box2[3] and box1_midy > box2[1] and box2_midy < box1[3] and box2_midy > box1[1]:
return True
else:
return False
def union_box(box1, box2):
"""
Params:
box1: [x1, y1, x2, y2]
box2: [x1, y1, x2, y2]
"""
x1 = min(box1[0], box2[0])
y1 = min(box1[1], box2[1])
x2 = max(box1[2], box2[2])
y2 = max(box1[3], box2[3])
return [x1, y1, x2, y2]
def space_layout(texts, boxes, threshold_show_spaces=8, threshold_char_width=0.02):
line_boxes = []
line_texts = []
max_line_char_num = 0
line_width = 0
# print(f"len_boxes: {len(boxes)}")
boxes = np.array(boxes)
texts = np.array(texts)
while len(boxes) > 0:
box = boxes[0]
mid = (boxes[:, 3] + boxes[:, 1]) / 2
inline_boxes = np.logical_and(mid > box[1], mid < box[3])
sorted_xs = np.argsort(boxes[inline_boxes][:, 0], axis=0)
line_box = boxes[inline_boxes][sorted_xs]
line_text = texts[inline_boxes][sorted_xs]
boxes = boxes[~inline_boxes]
texts = texts[~inline_boxes]
line_boxes.append(line_box.tolist())
line_texts.append(line_text.tolist())
if len(" ".join(line_texts[-1])) > max_line_char_num:
max_line_char_num = len(" ".join(line_texts[-1]))
line_width = np.array(line_boxes[-1])
line_width = line_width[:, 2].max() - line_width[:, 0].min()
char_width = (line_width / max_line_char_num) if max_line_char_num > 0 else 0
if threshold_char_width == 0.0:
if char_width == 0:
char_width = 1
else:
if char_width <= 0.02:
char_width = 0.02
space_line_texts = []
for i, line_box in enumerate(line_boxes):
space_line_text = ""
for j, box in enumerate(line_box):
left_char_num = int(box[0] / char_width)
left_char_num = max((left_char_num - len(space_line_text)), 1)
# verbose layout
# space_line_text += " " * left_char_num
# minified layout
if left_char_num > threshold_show_spaces:
space_line_text += f" <{left_char_num}> "
else:
space_line_text += " "
space_line_text += line_texts[i][j]
space_line_texts.append(space_line_text + "\n")
return "".join(space_line_texts)
def read_pdf(
file: AbstractFile,
scale: float = 300 / 72,
rgb_mode: bool = True,
password: Optional[str] = None,
**kwargs: Any,
) -> List[np.ndarray]:
"""Read a PDF file and convert it into an image in numpy format
>>> from doctr.documents import read_pdf
>>> doc = read_pdf("path/to/your/doc.pdf")
Args:
file: the path to the PDF file
scale: rendering scale (1 corresponds to 72dpi)
rgb_mode: if True, the output will be RGB, otherwise BGR
password: a password to unlock the document, if encrypted
kwargs: additional parameters to :meth:`pypdfium2.PdfPage.render`
Returns:
the list of pages decoded as numpy ndarray of shape H x W x C
"""
# Rasterise pages to numpy ndarrays with pypdfium2
import pypdfium2 as pdfium
pdf = pdfium.PdfDocument(file, password=password, autoclose=True)
return [page.render(scale=scale, rev_byteorder=rgb_mode, **kwargs).to_numpy() for page in pdf]
|