test / src /cli.py
iblfe's picture
Upload folder using huggingface_hub
b585c7f verified
raw
history blame
9.02 kB
import copy
import torch
from evaluate_params import eval_func_param_names, input_args_list
from gen import get_score_model, get_model, evaluate, check_locals, get_model_retry
from prompter import non_hf_types
from utils import clear_torch_cache, NullContext, get_kwargs
def run_cli( # for local function:
base_model=None, lora_weights=None, inference_server=None, regenerate_clients=None,
debug=None,
examples=None, memory_restriction_level=None,
# for get_model:
score_model=None, load_8bit=None, load_4bit=None, low_bit_mode=None, load_half=None, use_flash_attention_2=None,
load_gptq=None, use_autogptq=None, load_awq=None, load_exllama=None, use_safetensors=None, revision=None,
use_gpu_id=None, tokenizer_base_model=None,
gpu_id=None, n_jobs=None, n_gpus=None, local_files_only=None, resume_download=None, use_auth_token=None,
trust_remote_code=None, offload_folder=None, rope_scaling=None, max_seq_len=None, compile_model=None,
llamacpp_dict=None, llamacpp_path=None,
exllama_dict=None, gptq_dict=None, attention_sinks=None, sink_dict=None, hf_model_dict=None,
truncation_generation=None,
use_pymupdf=None,
use_unstructured_pdf=None,
use_pypdf=None,
enable_pdf_ocr=None,
enable_pdf_doctr=None,
enable_imagegen_high_sd=None,
try_pdf_as_html=None,
# for some evaluate args
stream_output=None, async_output=None, num_async=None,
prompt_type=None, prompt_dict=None, system_prompt=None,
temperature=None, top_p=None, top_k=None, penalty_alpha=None, num_beams=None,
max_new_tokens=None, min_new_tokens=None, early_stopping=None, max_time=None, repetition_penalty=None,
num_return_sequences=None, do_sample=None, chat=None,
langchain_mode=None, langchain_action=None, langchain_agents=None,
document_subset=None, document_choice=None,
document_source_substrings=None,
document_source_substrings_op=None,
document_content_substrings=None,
document_content_substrings_op=None,
top_k_docs=None, chunk=None, chunk_size=None,
pre_prompt_query=None, prompt_query=None,
pre_prompt_summary=None, prompt_summary=None, hyde_llm_prompt=None,
image_audio_loaders=None,
pdf_loaders=None,
url_loaders=None,
jq_schema=None,
extract_frames=None,
llava_prompt=None,
visible_models=None,
h2ogpt_key=None,
add_search_to_context=None,
chat_conversation=None,
text_context_list=None,
docs_ordering_type=None,
min_max_new_tokens=None,
max_input_tokens=None,
max_total_input_tokens=None,
docs_token_handling=None,
docs_joiner=None,
hyde_level=None,
hyde_template=None,
hyde_show_only_final=None,
hyde_show_intermediate_in_accordion=None,
doc_json_mode=None,
chatbot_role=None,
speaker=None,
tts_language=None,
tts_speed=None,
# for evaluate kwargs
captions_model=None,
caption_loader=None,
doctr_loader=None,
pix2struct_loader=None,
llava_model=None,
image_gen_loader=None,
image_gen_loader_high=None,
image_change_loader=None,
asr_model=None,
asr_loader=None,
image_audio_loaders_options0=None,
pdf_loaders_options0=None,
url_loaders_options0=None,
jq_schema0=None,
keep_sources_in_context=None,
gradio_errors_to_chatbot=None,
allow_chat_system_prompt=None,
src_lang=None, tgt_lang=None, concurrency_count=None, save_dir=None, sanitize_bot_response=None,
model_state0=None,
max_max_new_tokens=None,
is_public=None,
max_max_time=None,
raise_generate_gpu_exceptions=None, load_db_if_exists=None, use_llm_if_no_docs=None,
my_db_state0=None, selection_docs_state0=None, dbs=None, langchain_modes=None, langchain_mode_paths=None,
detect_user_path_changes_every_query=None,
use_openai_embedding=None, use_openai_model=None,
hf_embedding_model=None, migrate_embedding_model=None, auto_migrate_db=None,
cut_distance=None,
answer_with_sources=None,
append_sources_to_answer=None,
append_sources_to_chat=None,
show_accordions=None,
top_k_docs_max_show=None,
show_link_in_sources=None,
langchain_instruct_mode=None,
add_chat_history_to_context=None,
context=None, iinput=None,
db_type=None, first_para=None, text_limit=None, verbose=None,
gradio=None, cli=None,
use_cache=None,
auto_reduce_chunks=None, max_chunks=None, headsize=None,
model_lock=None, force_langchain_evaluate=None,
model_state_none=None,
# unique to this function:
cli_loop=None,
):
# avoid noisy command line outputs
import warnings
warnings.filterwarnings("ignore")
import logging
logging.getLogger("torch").setLevel(logging.ERROR)
logging.getLogger("transformers").setLevel(logging.ERROR)
from_ui = False
check_locals(**locals())
score_model = "" # FIXME: For now, so user doesn't have to pass
n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0
device = 'cpu' if n_gpus == 0 else 'cuda'
context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device
with context_class(device):
from functools import partial
# get score model
smodel, stokenizer, sdevice = get_score_model(reward_type=True,
**get_kwargs(get_score_model, exclude_names=['reward_type'],
**locals()))
model, tokenizer, device = get_model_retry(reward_type=False,
**get_kwargs(get_model, exclude_names=['reward_type'], **locals()))
model_dict = dict(base_model=base_model, tokenizer_base_model=tokenizer_base_model, lora_weights=lora_weights,
inference_server=inference_server, prompt_type=prompt_type, prompt_dict=prompt_dict,
visible_models=None, h2ogpt_key=None)
model_state = dict(model=model, tokenizer=tokenizer, device=device)
model_state.update(model_dict)
requests_state0 = {}
roles_state0 = None
args = (model_state, my_db_state0, selection_docs_state0, requests_state0, roles_state0)
assert len(args) == len(input_args_list)
fun = partial(evaluate,
*args,
**get_kwargs(evaluate, exclude_names=input_args_list + eval_func_param_names,
**locals()))
example1 = examples[-1] # pick reference example
all_generations = []
if not context:
context = ''
while True:
clear_torch_cache(allow_skip=True)
instruction = input("\nEnter an instruction: ")
if instruction == "exit":
break
eval_vars = copy.deepcopy(example1)
eval_vars[eval_func_param_names.index('instruction')] = \
eval_vars[eval_func_param_names.index('instruction_nochat')] = instruction
eval_vars[eval_func_param_names.index('iinput')] = \
eval_vars[eval_func_param_names.index('iinput_nochat')] = iinput
eval_vars[eval_func_param_names.index('context')] = context
# grab other parameters, like langchain_mode
for k in eval_func_param_names:
if k in locals():
eval_vars[eval_func_param_names.index(k)] = locals()[k]
gener = fun(*tuple(eval_vars))
outr = ''
res_old = ''
for gen_output in gener:
res = gen_output['response']
sources = gen_output.get('sources', 'Failure of Generation')
if base_model not in non_hf_types or base_model in ['llama']:
if not stream_output:
print(res)
else:
# then stream output for gradio that has full output each generation, so need here to show only new chars
diff = res[len(res_old):]
print(diff, end='', flush=True)
res_old = res
outr = res # don't accumulate
else:
outr += res # just is one thing
if sources:
# show sources at end after model itself had streamed to std rest of response
print('\n\n' + str(sources), flush=True)
all_generations.append(outr + '\n')
if not cli_loop:
break
return all_generations