test / src /tts.py
iblfe's picture
Upload folder using huggingface_hub
b585c7f verified
raw
history blame
10.4 kB
from __future__ import annotations
import base64
import io
import time
from io import BytesIO
import numpy as np
import scipy
import wavio
import soundfile as sf
import torch
import librosa
from src.tts_sentence_parsing import init_sentence_state, get_sentence
from src.tts_utils import prepare_speech, get_no_audio, chunk_speed_change
speaker_embeddings = {
"BDL": "spkemb/cmu_us_bdl_arctic-wav-arctic_a0009.npy",
"CLB": "spkemb/cmu_us_clb_arctic-wav-arctic_a0144.npy",
"KSP": "spkemb/cmu_us_ksp_arctic-wav-arctic_b0087.npy",
"RMS": "spkemb/cmu_us_rms_arctic-wav-arctic_b0353.npy",
"SLT": "spkemb/cmu_us_slt_arctic-wav-arctic_a0508.npy",
}
def get_speech_model():
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
import torch
from datasets import load_dataset
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # .to("cuda:0")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to("cuda:0")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to("cuda:0")
# load xvector containing speaker's voice characteristics from a dataset
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to("cuda:0")
return processor, model, vocoder, speaker_embedding
def gen_t5(text, processor=None, model=None, speaker_embedding=None, vocoder=None):
inputs = processor(text=text, return_tensors="pt").to(model.device)
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
sf.write("speech.wav", speech.cpu().numpy(), samplerate=16000)
def get_tts_model(t5_model="microsoft/speecht5_tts",
t5_gan_model="microsoft/speecht5_hifigan",
use_gpu=True,
gpu_id='auto'):
if gpu_id == 'auto':
gpu_id = 0
if use_gpu:
device = 'cuda:%d' % gpu_id
else:
device = 'cpu'
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
processor = SpeechT5Processor.from_pretrained(t5_model)
model = SpeechT5ForTextToSpeech.from_pretrained(t5_model).to(device)
vocoder = SpeechT5HifiGan.from_pretrained(t5_gan_model).to(model.device)
return processor, model, vocoder
def get_speakers():
return ["SLT (female)",
"BDL (male)",
"CLB (female)",
"KSP (male)",
"RMS (male)",
"Surprise Me!",
"None",
]
def get_speakers_gr(value=None):
import gradio as gr
choices = get_speakers()
if value is None:
value = choices[0]
return gr.Dropdown(label="Speech Style",
choices=choices,
value=value)
def process_audio(sampling_rate, waveform):
# convert from int16 to floating point
waveform = waveform / 32678.0
# convert to mono if stereo
if len(waveform.shape) > 1:
waveform = librosa.to_mono(waveform.T)
# resample to 16 kHz if necessary
if sampling_rate != 16000:
waveform = librosa.resample(waveform, orig_sr=sampling_rate, target_sr=16000)
# limit to 30 seconds
waveform = waveform[:16000 * 30]
# make PyTorch tensor
waveform = torch.tensor(waveform)
return waveform
def predict_from_audio(processor, model, speaker_embedding, vocoder, audio, mic_audio=None, sr=16000):
# audio = tuple (sample_rate, frames) or (sample_rate, (frames, channels))
if mic_audio is not None:
sampling_rate, waveform = mic_audio
elif audio is not None:
sampling_rate, waveform = audio
else:
return sr, np.zeros(0).astype(np.int16)
waveform = process_audio(sampling_rate, waveform)
inputs = processor(audio=waveform, sampling_rate=sr, return_tensors="pt")
speech = model.generate_speech(inputs["input_values"], speaker_embedding, vocoder=vocoder)
speech = (speech.numpy() * 32767).astype(np.int16)
return sr, speech
def generate_speech(response, speaker,
model=None, processor=None, vocoder=None,
speaker_embedding=None,
sentence_state=None,
sr=16000,
tts_speed=1.0,
return_as_byte=True, return_gradio=False,
is_final=False, verbose=False):
if response:
if model is None or processor is None or vocoder is None:
processor, model, vocoder = get_tts_model()
if sentence_state is None:
sentence_state = init_sentence_state()
sentence, sentence_state, _ = get_sentence(response, sentence_state=sentence_state, is_final=is_final,
verbose=verbose)
else:
sentence = ''
if sentence:
if verbose:
print("begin _predict_from_text")
audio = _predict_from_text(sentence, speaker, processor=processor, model=model, vocoder=vocoder,
speaker_embedding=speaker_embedding, return_as_byte=return_as_byte, sr=sr,
tts_speed=tts_speed)
if verbose:
print("end _predict_from_text")
else:
if verbose:
print("no audio")
no_audio = get_no_audio(sr=sr, return_as_byte=return_as_byte)
if return_gradio:
import gradio as gr
audio = gr.Audio(value=no_audio, autoplay=False)
else:
audio = no_audio
return audio, sentence, sentence_state
def predict_from_text(text, speaker, tts_speed, processor=None, model=None, vocoder=None, return_as_byte=True, verbose=False):
if speaker == "None":
return
if return_as_byte:
audio0 = prepare_speech(sr=16000)
yield audio0
sentence_state = init_sentence_state()
speaker_embedding = get_speaker_embedding(speaker, model.device)
while True:
sentence, sentence_state, is_done = get_sentence(text, sentence_state=sentence_state, is_final=False,
verbose=verbose)
if sentence is not None:
audio = _predict_from_text(sentence, speaker, processor=processor, model=model, vocoder=vocoder,
speaker_embedding=speaker_embedding,
return_as_byte=return_as_byte,
tts_speed=tts_speed)
yield audio
else:
if is_done:
break
sentence, sentence_state, _ = get_sentence(text, sentence_state=sentence_state, is_final=True, verbose=verbose)
if sentence:
audio = _predict_from_text(sentence, speaker, processor=processor, model=model, vocoder=vocoder,
speaker_embedding=speaker_embedding,
return_as_byte=return_as_byte)
yield audio
def get_speaker_embedding(speaker, device):
if speaker == "Surprise Me!":
# load one of the provided speaker embeddings at random
idx = np.random.randint(len(speaker_embeddings))
key = list(speaker_embeddings.keys())[idx]
speaker_embedding = np.load(speaker_embeddings[key])
# randomly shuffle the elements
np.random.shuffle(speaker_embedding)
# randomly flip half the values
x = (np.random.rand(512) >= 0.5) * 1.0
x[x == 0] = -1.0
speaker_embedding *= x
# speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15
else:
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0).to(device)
return speaker_embedding
def _predict_from_text(text, speaker, processor=None, model=None, vocoder=None, speaker_embedding=None,
return_as_byte=True, sr=16000, tts_speed=1.0):
if len(text.strip()) == 0:
return get_no_audio(sr=sr, return_as_byte=return_as_byte)
if speaker_embedding is None:
speaker_embedding = get_speaker_embedding(speaker, model.device)
inputs = processor(text=text, return_tensors="pt")
# limit input length
input_ids = inputs["input_ids"]
input_ids = input_ids[..., :model.config.max_text_positions].to(model.device)
chunk = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
chunk = chunk.detach().cpu().numpy().squeeze()
chunk = (chunk * 32767).astype(np.int16)
chunk = chunk_speed_change(chunk, sr, tts_speed=tts_speed)
if return_as_byte:
return chunk.tobytes()
else:
return sr, chunk
def audio_to_html(audio):
audio_bytes = BytesIO()
wavio.write(audio_bytes, audio[1].astype(np.float32), audio[0], sampwidth=4)
audio_bytes.seek(0)
audio_base64 = base64.b64encode(audio_bytes.read()).decode("utf-8")
audio_player = f'<audio src="data:audio/mpeg;base64,{audio_base64}" controls autoplay></audio>'
return audio_player
def text_to_speech(text, sr=16000):
processor, model, vocoder, speaker_embedding = get_speech_model()
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
sf.write("speech.wav", speech.numpy(), samplerate=sr)
def test_bark():
# Too slow, 20s on GPU
from transformers import AutoProcessor, AutoModel
# bark_model = "suno/bark"
bark_model = "suno/bark-small"
# processor = AutoProcessor.from_pretrained("suno/bark-small")
processor = AutoProcessor.from_pretrained(bark_model)
model = AutoModel.from_pretrained(bark_model).to("cuda")
inputs = processor(
text=[
"Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."],
return_tensors="pt",
)
inputs = inputs.to("cuda")
t0 = time.time()
speech_values = model.generate(**inputs, do_sample=True)
print("Duration: %s" % (time.time() - t0), flush=True)
# sampling_rate = model.config.sample_rate
sampling_rate = 24 * 1024
scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())