test / tests /test_utils.py
iblfe's picture
Upload folder using huggingface_hub
b585c7f verified
raw
history blame
7.28 kB
import sys
import pytest
from src.utils import get_list_or_str, read_popen_pipes, get_token_count, reverse_ucurve_list, undo_reverse_ucurve_list
from tests.utils import wrap_test_forked
import subprocess as sp
@wrap_test_forked
def test_get_list_or_str():
assert get_list_or_str(['foo', 'bar']) == ['foo', 'bar']
assert get_list_or_str('foo') == 'foo'
assert get_list_or_str("['foo', 'bar']") == ['foo', 'bar']
@wrap_test_forked
def test_stream_popen1():
cmd_python = sys.executable + " -i -q -u"
cmd = cmd_python + " -c print('hi')"
# cmd = cmd.split(' ')
with sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE, text=True, shell=True) as p:
for out_line, err_line in read_popen_pipes(p):
print(out_line, end='')
print(err_line, end='')
p.poll()
@wrap_test_forked
def test_stream_popen2():
script = """for i in 0 1 2 3 4 5
do
echo "This messages goes to stdout $i"
sleep 1
echo This message goes to stderr >&2
sleep 1
done
"""
with open('pieces.sh', 'wt') as f:
f.write(script)
with sp.Popen(["./pieces.sh"], stdout=sp.PIPE, stderr=sp.PIPE, text=True, shell=True) as p:
for out_line, err_line in read_popen_pipes(p):
print(out_line, end='')
print(err_line, end='')
p.poll()
@pytest.mark.parametrize("text_context_list",
['text_context_list1', 'text_context_list2', 'text_context_list3', 'text_context_list4',
'text_context_list5', 'text_context_list6'])
@pytest.mark.parametrize("system_prompt", ['auto', ''])
@pytest.mark.parametrize("context", ['context1', 'context2'])
@pytest.mark.parametrize("iinput", ['iinput1', 'iinput2'])
@pytest.mark.parametrize("chat_conversation", ['chat_conversation1', 'chat_conversation2'])
@pytest.mark.parametrize("instruction", ['instruction1', 'instruction2'])
@wrap_test_forked
def test_limited_prompt(instruction, chat_conversation, iinput, context, system_prompt, text_context_list):
instruction1 = 'Who are you?'
instruction2 = ' '.join(['foo_%s ' % x for x in range(0, 500)])
instruction = instruction1 if instruction == 'instruction1' else instruction2
iinput1 = 'Extra instruction info'
iinput2 = ' '.join(['iinput_%s ' % x for x in range(0, 500)])
iinput = iinput1 if iinput == 'iinput1' else iinput2
context1 = 'context'
context2 = ' '.join(['context_%s ' % x for x in range(0, 500)])
context = context1 if context == 'context1' else context2
chat_conversation1 = []
chat_conversation2 = [['user_conv_%s ' % x, 'bot_conv_%s ' % x] for x in range(0, 500)]
chat_conversation = chat_conversation1 if chat_conversation == 'chat_conversation1' else chat_conversation2
text_context_list1 = []
text_context_list2 = ['doc_%s ' % x for x in range(0, 500)]
text_context_list3 = ['doc_%s ' % x for x in range(0, 10)]
text_context_list4 = ['documentmany_%s ' % x for x in range(0, 10000)]
import random, string
text_context_list5 = [
'documentlong_%s_%s' % (x, ''.join(random.choices(string.ascii_letters + string.digits, k=300))) for x in
range(0, 20)]
text_context_list6 = [
'documentlong_%s_%s' % (x, ''.join(random.choices(string.ascii_letters + string.digits, k=4000))) for x in
range(0, 1)]
if text_context_list == 'text_context_list1':
text_context_list = text_context_list1
elif text_context_list == 'text_context_list2':
text_context_list = text_context_list2
elif text_context_list == 'text_context_list3':
text_context_list = text_context_list3
elif text_context_list == 'text_context_list4':
text_context_list = text_context_list4
elif text_context_list == 'text_context_list5':
text_context_list = text_context_list5
elif text_context_list == 'text_context_list6':
text_context_list = text_context_list6
else:
raise ValueError("No such %s" % text_context_list)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('h2oai/h2ogpt-4096-llama2-7b-chat')
prompt_type = 'llama2'
prompt_dict = None
debug = False
chat = True
stream_output = True
from src.prompter import Prompter
prompter = Prompter(prompt_type, prompt_dict, debug=debug,
stream_output=stream_output,
system_prompt=system_prompt)
min_max_new_tokens = 256 # like in get_limited_prompt()
max_input_tokens = -1
max_new_tokens = 1024
model_max_length = 4096
from src.gen import get_limited_prompt
estimated_full_prompt, \
instruction, iinput, context, \
num_prompt_tokens, max_new_tokens, \
num_prompt_tokens0, num_prompt_tokens_actual, \
history_to_use_final, external_handle_chat_conversation, \
top_k_docs_trial, one_doc_size, truncation_generation, system_prompt = \
get_limited_prompt(instruction, iinput, tokenizer,
prompter=prompter,
max_new_tokens=max_new_tokens,
context=context,
chat_conversation=chat_conversation,
text_context_list=text_context_list,
model_max_length=model_max_length,
min_max_new_tokens=min_max_new_tokens,
max_input_tokens=max_input_tokens,
verbose=True)
print('%s -> %s or %s: len(history_to_use_final): %s top_k_docs_trial=%s one_doc_size: %s' % (num_prompt_tokens0,
num_prompt_tokens,
num_prompt_tokens_actual,
len(history_to_use_final),
top_k_docs_trial,
one_doc_size),
flush=True, file=sys.stderr)
assert num_prompt_tokens <= model_max_length + min_max_new_tokens
# actual might be less due to token merging for characters across parts, but not more
assert num_prompt_tokens >= num_prompt_tokens_actual
assert num_prompt_tokens_actual <= model_max_length
if top_k_docs_trial > 0:
text_context_list = text_context_list[:top_k_docs_trial]
elif one_doc_size is not None:
text_context_list = [text_context_list[0][:one_doc_size]]
else:
text_context_list = []
assert sum([get_token_count(x, tokenizer) for x in text_context_list]) <= model_max_length
@wrap_test_forked
def test_reverse_ucurve():
ab = []
a = [1, 2, 3, 4, 5, 6, 7, 8]
b = [2, 4, 6, 8, 7, 5, 3, 1]
ab.append([a, b])
a = [1]
b = [1]
ab.append([a, b])
a = [1, 2]
b = [2, 1]
ab.append([a, b])
a = [1, 2, 3]
b = [2, 3, 1]
ab.append([a, b])
a = [1, 2, 3, 4]
b = [2, 4, 3, 1]
ab.append([a, b])
for a, b in ab:
assert reverse_ucurve_list(a) == b
assert undo_reverse_ucurve_list(b) == a