test / src /gpt4all_llm.py
iblfe's picture
Upload folder using huggingface_hub
b585c7f verified
import inspect
import os
from typing import Dict, Any, Optional, List, Iterator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.schema.output import GenerationChunk
from langchain.llms import gpt4all
from pydantic.v1 import root_validator
from utils import FakeTokenizer, url_alive, download_simple, clear_torch_cache, n_gpus_global
def get_model_tokenizer_gpt4all(base_model, n_jobs=None, gpu_id=None, n_gpus=None, max_seq_len=None,
llamacpp_dict=None,
llamacpp_path=None):
cvd = os.getenv('CUDA_VISIBLE_DEVICES')
if gpu_id is not None and gpu_id != -1:
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
assert llamacpp_dict is not None
# defaults (some of these are generation parameters, so need to be passed in at generation time)
model_name = base_model.lower()
llama_kwargs = dict(model_name=model_name,
model=None,
n_jobs=n_jobs,
n_gpus=n_gpus,
main_gpu=gpu_id if gpu_id not in [None, -1, '-1'] else 0,
inner_class=True,
max_seq_len=max_seq_len,
llamacpp_dict=llamacpp_dict,
llamacpp_path=llamacpp_path)
model, tokenizer, redo, max_seq_len = get_llm_gpt4all(**llama_kwargs)
if redo:
del model
del tokenizer
clear_torch_cache()
# auto max_seq_len
llama_kwargs.update(dict(max_seq_len=max_seq_len))
model, tokenizer, redo, max_seq_len = get_llm_gpt4all(**llama_kwargs)
if cvd is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = cvd
else:
os.environ.pop('CUDA_VISIBLE_DEVICES', None)
return model, tokenizer, 'cpu' if n_gpus != 0 else 'cuda'
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
class H2OStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler):
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
# streaming to std already occurs without this
# sys.stdout.write(token)
# sys.stdout.flush()
pass
def get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=[]):
# default from class
model_kwargs = {k: v.default for k, v in dict(inspect.signature(cls).parameters).items() if k not in exclude_list}
# from our defaults
model_kwargs.update(default_kwargs)
# from user defaults
model_kwargs.update(llamacpp_dict)
# ensure only valid keys
func_names = list(inspect.signature(cls).parameters)
model_kwargs = {k: v for k, v in model_kwargs.items() if k in func_names}
# make int or float if can to satisfy types for class
for k, v in model_kwargs.items():
try:
if float(v) == int(v):
model_kwargs[k] = int(v)
else:
model_kwargs[k] = float(v)
except:
pass
return model_kwargs
def get_gpt4all_default_kwargs(max_new_tokens=256,
temperature=0.1,
repetition_penalty=1.0,
top_k=40,
top_p=0.7,
n_jobs=None,
verbose=False,
max_seq_len=None,
main_gpu=0,
):
if n_jobs in [None, -1]:
n_jobs = int(os.getenv('OMP_NUM_THREADS', str(os.cpu_count() // 2)))
n_jobs = max(1, min(20, n_jobs)) # hurts beyond some point
n_gpus = n_gpus_global
max_seq_len_local = max_seq_len if max_seq_len is not None else 2048 # fake for auto mode
default_kwargs = dict(context_erase=0.5,
n_batch=1,
max_tokens=max_seq_len_local - max_new_tokens,
n_predict=max_new_tokens,
repeat_last_n=64 if repetition_penalty != 1.0 else 0,
repeat_penalty=repetition_penalty,
temp=temperature,
temperature=temperature,
top_k=top_k,
top_p=top_p,
use_mlock=True,
n_ctx=max_seq_len_local,
n_threads=n_jobs,
main_gpu=main_gpu,
verbose=verbose)
if n_gpus != 0:
default_kwargs.update(dict(n_gpu_layers=100, f16_kv=True))
return default_kwargs
def get_llm_gpt4all(model_name=None,
model=None,
max_new_tokens=256,
temperature=0.1,
repetition_penalty=1.0,
top_k=40,
top_p=0.7,
streaming=False,
callbacks=None,
prompter=None,
context='',
iinput='',
n_jobs=None,
n_gpus=None,
main_gpu=0,
verbose=False,
inner_class=False,
max_seq_len=None,
llamacpp_path=None,
llamacpp_dict=None,
):
redo = False
if not inner_class:
assert prompter is not None
default_kwargs = \
get_gpt4all_default_kwargs(max_new_tokens=max_new_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
n_jobs=n_jobs,
verbose=verbose,
max_seq_len=max_seq_len,
main_gpu=main_gpu,
)
if model_name == 'llama':
# FIXME: streaming not thread safe due to:
# llama_cpp/utils.py: sys.stdout = self.outnull_file
# llama_cpp/utils.py: sys.stdout = self.old_stdout
cls = H2OLlamaCpp
if model is None:
llamacpp_dict = llamacpp_dict.copy()
model_path = llamacpp_dict.pop('model_path_llama')
llamacpp_path = os.getenv('LLAMACPP_PATH', llamacpp_path) or './'
if os.path.isfile(os.path.basename(model_path)):
# e.g. if offline but previously downloaded
model_path = os.path.basename(model_path)
elif os.path.isfile(os.path.join(llamacpp_path, os.path.basename(model_path))):
# e.g. so don't have to point to full previously-downloaded path
model_path = os.path.join(llamacpp_path, os.path.basename(model_path))
elif url_alive(model_path):
# online
dest = os.path.join(llamacpp_path, os.path.basename(model_path)) if llamacpp_path else None
if dest.endswith('?download=true'):
dest = dest.replace('?download=true', '')
model_path = download_simple(model_path, dest=dest)
else:
model_path = model
model_kwargs = get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=['lc_kwargs'])
model_kwargs.update(dict(model_path=model_path, callbacks=callbacks, streaming=streaming,
prompter=prompter, context=context, iinput=iinput,
n_gpus=n_gpus))
# migration to new langchain fix:
odd_keys = ['model_kwargs', 'grammar_path', 'grammar']
for key in odd_keys:
model_kwargs.pop(key, None)
llm = cls(**model_kwargs)
llm.client.verbose = verbose
inner_model = llm.client
if max_seq_len is None:
redo = True
max_seq_len = llm.client.n_embd()
print("Auto-detected LLaMa n_ctx=%s, will unload then reload with this setting." % max_seq_len)
# with multiple GPUs, something goes wrong unless generation occurs early before other imports
# CUDA error 704 at /tmp/pip-install-khkugdmy/llama-cpp-python_8c0a9782b7604a5aaf95ec79856eac97/vendor/llama.cpp/ggml-cuda.cu:6408: peer access is already enabled
inner_model("Say exactly one word", max_tokens=1)
inner_tokenizer = FakeTokenizer(tokenizer=llm.client, is_llama_cpp=True, model_max_length=max_seq_len)
elif model_name == 'gpt4all_llama':
# FIXME: streaming not thread safe due to:
# gpt4all/pyllmodel.py: sys.stdout = stream_processor
# gpt4all/pyllmodel.py: sys.stdout = old_stdout
cls = H2OGPT4All
if model is None:
llamacpp_dict = llamacpp_dict.copy()
model_path = llamacpp_dict.pop('model_name_gpt4all_llama')
if url_alive(model_path):
# online
llamacpp_path = os.getenv('LLAMACPP_PATH', llamacpp_path) or './'
dest = os.path.join(llamacpp_path, os.path.basename(model_path)) if llamacpp_path else None
model_path = download_simple(model_path, dest=dest)
else:
model_path = model
model_kwargs = get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=['lc_kwargs'])
model_kwargs.update(
dict(model=model_path, backend='llama', callbacks=callbacks, streaming=streaming,
prompter=prompter, context=context, iinput=iinput))
llm = cls(**model_kwargs)
inner_model = llm.client
inner_tokenizer = FakeTokenizer(model_max_length=max_seq_len)
elif model_name == 'gptj':
# FIXME: streaming not thread safe due to:
# gpt4all/pyllmodel.py: sys.stdout = stream_processor
# gpt4all/pyllmodel.py: sys.stdout = old_stdout
cls = H2OGPT4All
if model is None:
llamacpp_dict = llamacpp_dict.copy()
model_path = llamacpp_dict.pop('model_name_gptj') if model is None else model
if url_alive(model_path):
llamacpp_path = os.getenv('LLAMACPP_PATH', llamacpp_path) or './'
dest = os.path.join(llamacpp_path, os.path.basename(model_path)) if llamacpp_path else None
model_path = download_simple(model_path, dest=dest)
else:
model_path = model
model_kwargs = get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=['lc_kwargs'])
model_kwargs.update(
dict(model=model_path, backend='gptj', callbacks=callbacks, streaming=streaming,
prompter=prompter, context=context, iinput=iinput))
llm = cls(**model_kwargs)
inner_model = llm.client
inner_tokenizer = FakeTokenizer(model_max_length=max_seq_len)
else:
raise RuntimeError("No such model_name %s" % model_name)
if inner_class:
return inner_model, inner_tokenizer, redo, max_seq_len
else:
return llm
class H2OGPT4All(gpt4all.GPT4All):
model: Any
prompter: Any
context: Any = ''
iinput: Any = ''
"""Path to the pre-trained GPT4All model file."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in the environment."""
try:
if isinstance(values["model"], str):
from gpt4all import GPT4All as GPT4AllModel
full_path = values["model"]
model_path, delimiter, model_name = full_path.rpartition("/")
model_path += delimiter
values["client"] = GPT4AllModel(
model_name=model_name,
model_path=model_path or None,
model_type=values["backend"],
allow_download=True,
)
if values["n_threads"] is not None:
# set n_threads
values["client"].model.set_thread_count(values["n_threads"])
else:
values["client"] = values["model"]
if values["n_threads"] is not None:
# set n_threads
values["client"].model.set_thread_count(values["n_threads"])
try:
values["backend"] = values["client"].model_type
except AttributeError:
# The below is for compatibility with GPT4All Python bindings <= 0.2.3.
values["backend"] = values["client"].model.model_type
except ImportError:
raise ValueError(
"Could not import gpt4all python package. "
"Please install it with `pip install gpt4all`."
)
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs,
) -> str:
# Roughly 4 chars per token if natural language
n_ctx = 2048
prompt = prompt[-self.max_tokens * 4:]
# use instruct prompting
data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
prompt = self.prompter.generate_prompt(data_point)
verbose = False
if verbose:
print("_call prompt: %s" % prompt, flush=True)
# FIXME: GPT4ALl doesn't support yield during generate, so cannot support streaming except via itself to stdout
return super()._call(prompt, stop=stop, run_manager=run_manager)
# FIXME: Unsure what uses
# def get_token_ids(self, text: str) -> List[int]:
# return self.client.tokenize(b" " + text.encode("utf-8"))
from langchain.llms import LlamaCpp
class H2OLlamaCpp(LlamaCpp):
"""Path to the pre-trained GPT4All model file."""
model_path: Any
prompter: Any
context: Any
iinput: Any
count_input_tokens: Any = 0
prompts: Any = []
count_output_tokens: Any = 0
n_gpus: Any = -1
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that llama-cpp-python library is installed."""
if isinstance(values["model_path"], str):
model_path = values["model_path"]
model_param_names = [
"lora_path",
"lora_base",
"n_ctx",
"n_parts",
"seed",
"f16_kv",
"logits_all",
"vocab_only",
"use_mlock",
"n_threads",
"n_batch",
"use_mmap",
"last_n_tokens_size",
]
model_params = {k: values[k] for k in model_param_names}
# For backwards compatibility, only include if non-null.
if values["n_gpu_layers"] is not None:
model_params["n_gpu_layers"] = values["n_gpu_layers"]
try:
try:
if values["n_gpus"] == 0:
from llama_cpp import Llama
else:
from llama_cpp_cuda import Llama
except Exception as e:
print("Failed to listen to n_gpus: %s" % str(e), flush=True)
try:
from llama_cpp import Llama
except ImportError:
from llama_cpp_cuda import Llama
values["client"] = Llama(model_path, **model_params)
except ImportError:
raise ModuleNotFoundError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception as e:
raise ValueError(
f"Could not load Llama model from path: {model_path}. "
f"Received error {e}"
)
else:
values["client"] = values["model_path"]
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs,
) -> str:
verbose = False
inner_tokenizer = FakeTokenizer(tokenizer=self.client, is_llama_cpp=True, model_max_length=self.n_ctx)
assert inner_tokenizer is not None
from h2oai_pipeline import H2OTextGenerationPipeline
prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, inner_tokenizer,
max_prompt_length=self.n_ctx)
# use instruct prompting
data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
prompt = self.prompter.generate_prompt(data_point)
self.count_input_tokens += self.get_num_tokens(prompt)
self.prompts.append(prompt)
if stop is None:
stop = []
stop.extend(self.prompter.stop_sequences)
if verbose:
print("_call prompt: %s" % prompt, flush=True)
if self.streaming:
# parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
text = ""
for token in self.stream(input=prompt, stop=stop):
# for token in self.stream(input=prompt, stop=stop, run_manager=run_manager):
text_chunk = token # ["choices"][0]["text"]
text += text_chunk
self.count_output_tokens += self.get_num_tokens(text)
text = self.remove_stop_text(text, stop=stop)
return text
else:
params = self._get_parameters(stop)
params = {**params, **kwargs}
result = self.client(prompt=prompt, **params)
text = result["choices"][0]["text"]
self.count_output_tokens += self.get_num_tokens(text)
text = self.remove_stop_text(text, stop=stop)
return text
def remove_stop_text(self, text, stop=None):
# remove stop sequences from the end of the generated text
if stop is None:
return text
for stop_seq in stop:
if stop_seq in text:
text = text[:text.index(stop_seq)]
return text
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
# parent expects only see actual new tokens, not prompt too
total_text = ''
for chunk in super()._stream(prompt, stop=stop, run_manager=run_manager, **kwargs):
# remove stop sequences from the end of the generated text
total_text += chunk.text
got_stop = False
if stop:
for stop_seq in stop:
if stop_seq in total_text:
got_stop = True
if not got_stop:
yield chunk
def get_token_ids(self, text: str) -> List[int]:
return self.client.tokenize(b" " + text.encode("utf-8"))