File size: 18,935 Bytes
7bacd60
 
 
d83d687
 
 
7bacd60
 
f877487
 
 
 
 
 
 
 
 
 
 
62fedb6
f877487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f62a54e
f877487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a36946
f877487
 
 
 
 
 
 
 
f62a54e
 
f877487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009060b
 
 
 
 
 
f877487
 
389fc1a
f877487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f62a54e
f877487
 
 
 
 
 
 
 
 
 
 
f62a54e
 
 
 
 
 
f877487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f62a54e
 
 
 
f877487
 
 
 
 
 
 
 
f62a54e
f877487
 
 
 
 
 
 
 
7bacd60
f877487
 
 
ba77978
389fc1a
ba77978
 
 
 
f877487
 
ab8e4fb
 
9006c68
 
 
 
f877487
 
 
 
 
 
ab8e4fb
f877487
 
 
 
 
 
 
 
 
ab8e4fb
f877487
 
 
 
 
 
 
 
 
ab8e4fb
f877487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba77978
875b225
d041e2c
875b225
 
d041e2c
875b225
 
d041e2c
875b225
9ab2b53
1d95843
74f71e8
 
 
 
 
 
 
 
d041e2c
1d95843
d041e2c
ba77978
 
f877487
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#### pull files from hub
from huggingface_hub import hf_hub_download
import os
yaml_file_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename="Prithvi_100M_config.yaml", token=os.environ.get("token"))
checkpoint=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename='Prithvi_100M.pt', token=os.environ.get("token"))
model_def=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M", filename='Prithvi.py', token=os.environ.get("token"))
os.system(f'cp {model_def} .')
#####
import argparse
import functools
import os
from typing import List

import numpy as np
import rasterio
import torch
import yaml
from einops import rearrange

from Prithvi import MaskedAutoencoderViT
import gradio as gr
from functools import partial


NO_DATA = -9999
NO_DATA_FLOAT = 0.0001
PERCENTILES = (0.1, 99.9)


def process_channel_group(orig_img, new_img, channels, data_mean, data_std):
    """ Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the
        original range using *data_mean* and *data_std* and then lowest and highest percentiles are
        removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.
    Args:
        orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
        new_img: torch.Tensor representing image with shape = (bands, H, W).
        channels: list of indices representing RGB channels.
        data_mean: list of mean values for each band.
        data_std: list of std values for each band.
    Returns:
        torch.Tensor with shape (num_channels, height, width) for original image
        torch.Tensor with shape (num_channels, height, width) for the other image
    """

    stack_c = [], []

    for c in channels:
        orig_ch = orig_img[c, ...]
        valid_mask = torch.ones_like(orig_ch, dtype=torch.bool)
        valid_mask[orig_ch == NO_DATA_FLOAT] = False

        # Back to original data range
        orig_ch = (orig_ch * data_std[c]) + data_mean[c]
        new_ch = (new_img[c, ...] * data_std[c]) + data_mean[c]

        # Rescale (enhancing contrast)
        min_value, max_value = np.percentile(orig_ch[valid_mask], PERCENTILES)

        orig_ch = torch.clamp((orig_ch - min_value) / (max_value - min_value), 0, 1)
        new_ch = torch.clamp((new_ch - min_value) / (max_value - min_value), 0, 1)

        # No data as zeros
        orig_ch[~valid_mask] = 0
        new_ch[~valid_mask] = 0

        stack_c[0].append(orig_ch)
        stack_c[1].append(new_ch)

    # Channels first
    stack_orig = torch.stack(stack_c[0], dim=0)
    stack_rec = torch.stack(stack_c[1], dim=0)

    return stack_orig, stack_rec


def read_geotiff(file_path: str):
    """ Read all bands from *file_path* and returns image + meta info.
    Args:
        file_path: path to image file.
    Returns:
        np.ndarray with shape (bands, height, width)
        meta info dict
    """

    with rasterio.open(file_path) as src:
        img = src.read()
        meta = src.meta

    return img, meta


def save_geotiff(image, output_path: str, meta: dict):
    """ Save multi-band image in Geotiff file.
    Args:
        image: np.ndarray with shape (bands, height, width)
        output_path: path where to save the image
        meta: dict with meta info.
    """

    with rasterio.open(output_path, "w", **meta) as dest:
        for i in range(image.shape[0]):
            dest.write(image[i, :, :], i + 1)

    return


def _convert_np_uint8(float_image: torch.Tensor):

    image = float_image.numpy() * 255.0
    image = image.astype(dtype=np.uint8)
    image = image.transpose((1, 2, 0))

    return image


def load_example(file_paths: List[str], mean: List[float], std: List[float]):
    """ Build an input example by loading images in *file_paths*.
    Args:
        file_paths: list of file paths .
        mean: list containing mean values for each band in the images in *file_paths*.
        std: list containing std values for each band in the images in *file_paths*.
    Returns:
        np.array containing created example
        list of meta info for each image in *file_paths*
    """

    imgs = []
    metas = []

    for file in file_paths:
        img, meta = read_geotiff(file)
        img = img[:6]*10000 if img[:6].mean() <= 2 else img[:6]

        # Rescaling (don't normalize on nodata)
        img = np.moveaxis(img, 0, -1)   # channels last for rescaling
        img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)

        imgs.append(img)
        metas.append(meta)

    imgs = np.stack(imgs, axis=0)    # num_frames, H, W, C
    imgs = np.moveaxis(imgs, -1, 0).astype('float32')  # C, num_frames, H, W
    imgs = np.expand_dims(imgs, axis=0)  # add batch dim

    return imgs, metas


def run_model(model: torch.nn.Module, input_data: torch.Tensor, mask_ratio: float, device: torch.device):
    """ Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible).
    Args:
        model: MAE model to run.
        input_data: torch.Tensor with shape (B, C, T, H, W).
        mask_ratio: mask ratio to use.
        device: device where model should run.
    Returns:
        3 torch.Tensor with shape (B, C, T, H, W).
    """

    with torch.no_grad():
        x = input_data.to(device)

        _, pred, mask = model(x, mask_ratio)

    # Create mask and prediction images (un-patchify)
    mask_img = model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu()
    pred_img = model.unpatchify(pred).detach().cpu()

    # Mix visible and predicted patches
    rec_img = input_data.clone()
    rec_img[mask_img == 1] = pred_img[mask_img == 1]  # binary mask: 0 is keep, 1 is remove

    # Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
    mask_img = (~(mask_img.to(torch.bool))).to(torch.float)

    return rec_img, mask_img


def save_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data):
    """ Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
    Args:
        input_img: input torch.Tensor with shape (C, T, H, W).
        rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
        mask_img: mask torch.Tensor with shape (C, T, H, W).
        channels: list of indices representing RGB channels.
        mean: list of mean values for each band.
        std: list of std values for each band.
        output_dir: directory where to save outputs.
        meta_data: list of dicts with geotiff meta info.
    """

    for t in range(input_img.shape[1]):
        rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
                                                   new_img=rec_img[:, t, :, :],
                                                   channels=channels, data_mean=mean,
                                                   data_std=std)

        rgb_mask = mask_img[channels, t, :, :] * rgb_orig

        # Saving images

        save_geotiff(image=_convert_np_uint8(rgb_orig),
                     output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"),
                     meta=meta_data[t])

        save_geotiff(image=_convert_np_uint8(rgb_pred),
                     output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"),
                     meta=meta_data[t])

        save_geotiff(image=_convert_np_uint8(rgb_mask),
                     output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"),
                     meta=meta_data[t])


def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std):
    """ Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
    Args:
        input_img: input torch.Tensor with shape (C, T, H, W).
        rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
        mask_img: mask torch.Tensor with shape (C, T, H, W).
        channels: list of indices representing RGB channels.
        mean: list of mean values for each band.
        std: list of std values for each band.
        output_dir: directory where to save outputs.
        meta_data: list of dicts with geotiff meta info.
    """
    rgb_orig_list = []
    rgb_mask_list = []
    rgb_pred_list = []
    
    for t in range(input_img.shape[1]):
        rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
                                                   new_img=rec_img[:, t, :, :],
                                                   channels=channels, data_mean=mean,
                                                   data_std=std)

        rgb_mask = mask_img[channels, t, :, :] * rgb_orig

        # extract images
        rgb_orig_list.append(_convert_np_uint8(rgb_orig))
        rgb_mask_list.append(_convert_np_uint8(rgb_mask))
        rgb_pred_list.append(_convert_np_uint8(rgb_pred))
        
    outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list

    return outputs


def predict_on_images(data_files: list, mask_ratio: float, yaml_file_path: str, checkpoint: str):

    
    try:
        data_files = [x.name for x in data_files]
        print('Path extracted from example')
    except:
        print('Files submitted through UI')

    # Get parameters --------
    print('This is the printout', data_files)

    with open(yaml_file_path, 'r') as f:
        params = yaml.safe_load(f)

    # data related
    num_frames = params['num_frames']
    img_size = params['img_size']
    bands = params['bands']
    mean = params['data_mean']
    std = params['data_std']

    # model related
    depth = params['depth']
    patch_size = params['patch_size']
    embed_dim = params['embed_dim']
    num_heads = params['num_heads']
    tubelet_size = params['tubelet_size']
    decoder_embed_dim = params['decoder_embed_dim']
    decoder_num_heads = params['decoder_num_heads']
    decoder_depth = params['decoder_depth']

    batch_size = params['batch_size']

    mask_ratio = params['mask_ratio'] if mask_ratio is None else mask_ratio

    # We must have *num_frames* files to build one example!
    assert len(data_files) == num_frames, "File list must be equal to expected number of frames."

    if torch.cuda.is_available():
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    print(f"Using {device} device.\n")

    # Loading data ---------------------------------------------------------------------------------

    input_data, meta_data = load_example(file_paths=data_files, mean=mean, std=std)

    # Create model and load checkpoint -------------------------------------------------------------

    model = MaskedAutoencoderViT(
            img_size=img_size,
            patch_size=patch_size,
            num_frames=num_frames,
            tubelet_size=tubelet_size,
            in_chans=len(bands),
            embed_dim=embed_dim,
            depth=depth,
            num_heads=num_heads,
            decoder_embed_dim=decoder_embed_dim,
            decoder_depth=decoder_depth,
            decoder_num_heads=decoder_num_heads,
            mlp_ratio=4.,
            norm_layer=functools.partial(torch.nn.LayerNorm, eps=1e-6),
            norm_pix_loss=False)

    total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f"\n--> Model has {total_params:,} parameters.\n")

    model.to(device)

    state_dict = torch.load(checkpoint, map_location=device)
    model.load_state_dict(state_dict)
    print(f"Loaded checkpoint from {checkpoint}")

    # Running model --------------------------------------------------------------------------------

    model.eval()
    channels = [bands.index(b) for b in ['B04', 'B03', 'B02']]  # BGR -> RGB
    
    # Reflect pad if not divisible by img_size
    original_h, original_w = input_data.shape[-2:]
    pad_h = img_size - (original_h % img_size)
    pad_w = img_size - (original_w % img_size)
    input_data = np.pad(input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode='reflect')

    # Build sliding window
    batch = torch.tensor(input_data, device='cpu')
    windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
    h1, w1 = windows.shape[3:5]
    windows = rearrange(windows, 'b c t h1 w1 h w -> (b h1 w1) c t h w', h=img_size, w=img_size)

    # Split into batches if number of windows > batch_size
    num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
    windows = torch.tensor_split(windows, num_batches, dim=0)

    # Run model
    rec_imgs = []
    mask_imgs = []
    for x in windows:
        rec_img, mask_img = run_model(model, x, mask_ratio, device)
        rec_imgs.append(rec_img)
        mask_imgs.append(mask_img)

    rec_imgs = torch.concat(rec_imgs, dim=0)
    mask_imgs = torch.concat(mask_imgs, dim=0)

    # Build images from patches
    rec_imgs = rearrange(rec_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)',
                         h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1)
    mask_imgs = rearrange(mask_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)',
                          h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1)

    # Cut padded images back to original size
    rec_imgs_full = rec_imgs[..., :original_h, :original_w]
    mask_imgs_full = mask_imgs[..., :original_h, :original_w]
    batch_full = batch[..., :original_h, :original_w]

    # Build RGB images
    for d in meta_data:
        d.update(count=3, dtype='uint8', compress='lzw', nodata=0)

    # save_rgb_imgs(batch[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...],
    #               channels, mean, std, output_dir, meta_data)

    outputs = extract_rgb_imgs(batch_full[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...],
                  channels, mean, std)


    print("Done!")

    return outputs




func = partial(predict_on_images, yaml_file_path=yaml_file_path,checkpoint=checkpoint)

def preprocess_example(example_list):
    print('######## preprocessing here ##########')
    example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
    
    return example_list
    

with gr.Blocks() as demo:
    
    gr.Markdown(value='# Prithvi image reconstruction demo')
    gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. Particularly, the model adopts a self-supervised encoder developed with a ViT architecture and Masked AutoEncoder learning strategy, with a MSE as a loss function. The model includes spatial attention across multiple patchies and also temporal attention for each patch. More info about the model and its weights are available [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M).\n
This demo showcases the image reconstracting over three timestamps, with the user providing a set of three HLS images and the model randomly masking out some proportion of the images and then reconstructing them based on the not masked portion of the images.\n
The user needs to provide three HLS geotiff images, including the following channels in reflectance units: Blue, Green, Red, NIRa, SWIR, SWIR 2.
''')
    with gr.Row():
        with gr.Column():
            inp_files = gr.Files(elem_id='files')
            # inp_slider = gr.Slider(0, 100, value=50, label="Mask ratio", info="Choose ratio of masking between 0 and 100", elem_id='slider'),
            btn = gr.Button("Submit")
    with gr.Row():
        gr.Markdown(value='## Original images')
    with gr.Row():
        gr.Markdown(value='T1')
        gr.Markdown(value='T2')
        gr.Markdown(value='T3')
    with gr.Row():
        out1_orig_t1=gr.Image(image_mode='RGB')
        out2_orig_t2 = gr.Image(image_mode='RGB')
        out3_orig_t3 = gr.Image(image_mode='RGB')
    with gr.Row():
        gr.Markdown(value='## Masked images')
    with gr.Row():
        gr.Markdown(value='T1')
        gr.Markdown(value='T2')
        gr.Markdown(value='T3')
    with gr.Row():
        out4_masked_t1=gr.Image(image_mode='RGB')
        out5_masked_t2 = gr.Image(image_mode='RGB')
        out6_masked_t3 = gr.Image(image_mode='RGB')
    with gr.Row():
        gr.Markdown(value='## Reonstructed images')
    with gr.Row():
        gr.Markdown(value='T1')
        gr.Markdown(value='T2')
        gr.Markdown(value='T3')
    with gr.Row():
        out7_pred_t1=gr.Image(image_mode='RGB')
        out8_pred_t2 = gr.Image(image_mode='RGB')
        out9_pred_t3 = gr.Image(image_mode='RGB')


    btn.click(fn=func, 
              # inputs=[inp_files, inp_slider], 
              inputs=inp_files,
              outputs=[out1_orig_t1, 
                       out2_orig_t2, 
                       out3_orig_t3, 
                       out4_masked_t1, 
                       out5_masked_t2, 
                       out6_masked_t3,
                       out7_pred_t1,
                       out8_pred_t2,
                       out9_pred_t3])
    with gr.Row():
        gr.Examples(examples=[[[os.path.join(os.path.dirname(__file__), "HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
                      os.path.join(os.path.dirname(__file__), "HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
                      os.path.join(os.path.dirname(__file__), "HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")]],
                     [[os.path.join(os.path.dirname(__file__), "HLS.L30.T17RMP.2018004T155509.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
                      os.path.join(os.path.dirname(__file__), "HLS.L30.T17RMP.2018036T155452.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
                      os.path.join(os.path.dirname(__file__), "HLS.L30.T17RMP.2018068T155438.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")]],
                     [[os.path.join(os.path.dirname(__file__), "HLS.L30.T18TVL.2018029T154533.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
                      os.path.join(os.path.dirname(__file__), "HLS.L30.T18TVL.2018141T154435.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
                      os.path.join(os.path.dirname(__file__), "HLS.L30.T18TVL.2018189T154446.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")]]],
                    inputs=inp_files,
                    outputs=[out1_orig_t1, 
                           out2_orig_t2, 
                           out3_orig_t3, 
                           out4_masked_t1, 
                           out5_masked_t2, 
                           out6_masked_t3,
                           out7_pred_t1,
                           out8_pred_t2,
                           out9_pred_t3],
                    # preprocess=preprocess_example,
                    fn=func,
                    cache_examples=True
    )
    

demo.launch()