File size: 7,803 Bytes
634d7ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
######### pull files
import os
from huggingface_hub import hf_hub_download
config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
filename="multi_temporal_crop_classification_Prithvi_100M.py",
token=os.environ.get("token"))
ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
filename='multi_temporal_crop_classification_best_mIoU_epoch_66.pth',
token=os.environ.get("token"))
##########
import argparse
from mmcv import Config
from mmseg.models import build_segmentor
from mmseg.datasets.pipelines import Compose, LoadImageFromFile
import rasterio
import torch
from mmseg.apis import init_segmentor
from mmcv.parallel import collate, scatter
import numpy as np
import glob
import os
import time
import numpy as np
import gradio as gr
from functools import partial
import pdb
import matplotlib.pyplot as plt
def open_tiff(fname):
with rasterio.open(fname, "r") as src:
data = src.read()
return data
def write_tiff(img_wrt, filename, metadata):
"""
It writes a raster image to file.
:param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
:param filename: file path to the output file
:param metadata: metadata to use to write the raster to disk
:return:
"""
with rasterio.open(filename, "w", **metadata) as dest:
if len(img_wrt.shape) == 2:
img_wrt = img_wrt[None]
for i in range(img_wrt.shape[0]):
dest.write(img_wrt[i, :, :], i + 1)
return filename
def get_meta(fname):
with rasterio.open(fname, "r") as src:
meta = src.meta
return meta
def preprocess_example(example_list):
example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
return example_list
def inference_segmentor(model, imgs, custom_test_pipeline=None):
"""Inference image(s) with the segmentor.
Args:
model (nn.Module): The loaded segmentor.
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
images.
Returns:
(list[Tensor]): The segmentation result.
"""
cfg = model.cfg
device = next(model.parameters()).device # model device
# build the data pipeline
test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
test_pipeline = Compose(test_pipeline)
# prepare data
data = []
imgs = imgs if isinstance(imgs, list) else [imgs]
for img in imgs:
img_data = {'img_info': {'filename': img}}
img_data = test_pipeline(img_data)
data.append(img_data)
# print(data.shape)
data = collate(data, samples_per_gpu=len(imgs))
if next(model.parameters()).is_cuda:
# data = collate(data, samples_per_gpu=len(imgs))
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
# img_metas = scatter(data['img_metas'],'cpu')
# data['img_metas'] = [i.data[0] for i in data['img_metas']]
img_metas = data['img_metas'].data[0]
img = data['img']
data = {'img': img, 'img_metas':img_metas}
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
return result
def inference_on_file(target_image, model, custom_test_pipeline):
target_image = target_image.name
# print(type(target_image))
# output_image = target_image.replace('.tif', '_pred.tif')
time_taken=-1
try:
st = time.time()
print('Running inference...')
result = inference_segmentor(model, target_image, custom_test_pipeline)
print("Output has shape: " + str(result[0].shape))
##### get metadata mask
mask = open_tiff(target_image)
# rgb = mask[[2, 1, 0], :, :].transpose((1,2,0))
rgb1 = mask[[2, 1, 0], :, :].transpose((1,2,0))
rgb2 = mask[[8, 7, 6], :, :].transpose((1,2,0))
rgb3 = mask[[14, 13, 12], :, :].transpose((1,2,0))
meta = get_meta(target_image)
mask = np.where(mask == meta['nodata'], 1, 0)
mask = np.max(mask, axis=0)[None]
result[0] = np.where(mask == 1, -1, result[0])
##### Save file to disk
meta["count"] = 1
meta["dtype"] = "int16"
meta["compress"] = "lzw"
meta["nodata"] = -1
print('Saving output...')
# write_tiff(result[0], output_image, meta)
et = time.time()
time_taken = np.round(et - st, 1)
print(f'Inference completed in {str(time_taken)} seconds')
except:
print(f'Error on image {target_image} \nContinue to next input')
return rgb, result[0][0]*255
def process_test_pipeline(custom_test_pipeline, bands=None):
# change extracted bands if necessary
if bands is not None:
extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
if len(extract_index) > 0:
custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
# adapt collected keys if necessary
if len(collect_index) > 0:
keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
return custom_test_pipeline
config = Config.fromfile(config_path)
config.model.backbone.pretrained=None
model = init_segmentor(config, ckpt, device='cpu')
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
with gr.Blocks() as demo:
gr.Markdown(value='# Prithvi multi temporal crop classification')
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
''')
with gr.Row():
with gr.Column():
inp = gr.File()
btn = gr.Button("Submit")
with gr.Row():
gr.Markdown(value='### T1')
gr.Markdown(value='### T2')
gr.Markdown(value='### T3')
gr.Markdown(value='### Model prediction')
with gr.Row():
inp1=gr.Image(image_mode='RGB')
inp2=gr.Image(image_mode='RGB')
inp3=gr.Image(image_mode='RGB')
out = gr.Image(image_mode='L')
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
with gr.Row():
gr.Examples(examples=["chip_102_345_merged.tif",
"chip_104_104_merged.tif",
"chip_109_421_merged.tif"],
inputs=inp,
outputs=[inp1, inp2, inp3, out],
preprocess=preprocess_example,
fn=func,
cache_examples=True,
)
demo.launch() |