import os import torch import yaml import numpy as np import gradio as gr from einops import rearrange from functools import partial from huggingface_hub import hf_hub_download # pull files from hub token = os.environ.get("HF_TOKEN", None) config_path = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-1.0-100M", filename="config.json", token=token) checkpoint = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-1.0-100M", filename='Prithvi_EO_V1_100M.pt', token=token) model_def = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-1.0-100M", filename='prithvi_mae.py', token=token) model_inference = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-1.0-100M", filename='inference.py', token=token) os.system(f'cp {model_def} .') os.system(f'cp {model_inference} .') from prithvi_mae import PrithviMAE from inference import process_channel_group, _convert_np_uint8, load_example, run_model def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std): """ Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp. Args: input_img: input torch.Tensor with shape (C, T, H, W). rec_img: reconstructed torch.Tensor with shape (C, T, H, W). mask_img: mask torch.Tensor with shape (C, T, H, W). channels: list of indices representing RGB channels. mean: list of mean values for each band. std: list of std values for each band. output_dir: directory where to save outputs. meta_data: list of dicts with geotiff meta info. """ rgb_orig_list = [] rgb_mask_list = [] rgb_pred_list = [] for t in range(input_img.shape[1]): rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :], new_img=rec_img[:, t, :, :], channels=channels, mean=mean, std=std) rgb_mask = mask_img[channels, t, :, :] * rgb_orig # extract images rgb_orig_list.append(_convert_np_uint8(rgb_orig).transpose(1, 2, 0)) rgb_mask_list.append(_convert_np_uint8(rgb_mask).transpose(1, 2, 0)) rgb_pred_list.append(_convert_np_uint8(rgb_pred).transpose(1, 2, 0)) # Add white dummy image values for missing timestamps dummy = np.ones((20, 20), dtype=np.uint8) * 255 num_dummies = 3 - len(rgb_orig_list) if num_dummies: rgb_orig_list.extend([dummy] * num_dummies) rgb_mask_list.extend([dummy] * num_dummies) rgb_pred_list.extend([dummy] * num_dummies) outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list return outputs def predict_on_images(data_files: list, config_path: str, checkpoint: str, mask_ratio: float = None): try: data_files = [x.name for x in data_files] print('Path extracted from example') except: print('Files submitted through UI') # Get parameters -------- print('This is the printout', data_files) with open(config_path, 'r') as f: config = yaml.safe_load(f)['pretrained_cfg'] batch_size = 8 bands = config['bands'] num_frames = len(data_files) mean = config['mean'] std = config['std'] img_size = config['img_size'] mask_ratio = mask_ratio or config['mask_ratio'] assert num_frames <= 3, "Demo only supports up to three timestamps" if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print(f"Using {device} device.\n") # Loading data --------------------------------------------------------------------------------- input_data, meta_data = load_example(file_paths=data_files, mean=mean, std=std) # Create model and load checkpoint ------------------------------------------------------------- config.update( num_frames=num_frames, ) model = PrithviMAE(**config) total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print(f"\n--> Model has {total_params:,} parameters.\n") model.to(device) state_dict = torch.load(checkpoint, map_location=device, weights_only=False) # discard fixed pos_embedding weight for k in list(state_dict.keys()): if 'pos_embed' in k: del state_dict[k] model.load_state_dict(state_dict, strict=False) print(f"Loaded checkpoint from {checkpoint}") # Running model -------------------------------------------------------------------------------- model.eval() channels = [bands.index(b) for b in ['B04', 'B03', 'B02']] # BGR -> RGB # Reflect pad if not divisible by img_size original_h, original_w = input_data.shape[-2:] pad_h = img_size - (original_h % img_size) pad_w = img_size - (original_w % img_size) input_data = np.pad(input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode='reflect') # Build sliding window batch = torch.tensor(input_data, device='cpu') windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size) h1, w1 = windows.shape[3:5] windows = rearrange(windows, 'b c t h1 w1 h w -> (b h1 w1) c t h w', h=img_size, w=img_size) # Split into batches if number of windows > batch_size num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1 windows = torch.tensor_split(windows, num_batches, dim=0) # Run model rec_imgs = [] mask_imgs = [] for x in windows: rec_img, mask_img = run_model(model, x, mask_ratio, device) rec_imgs.append(rec_img) mask_imgs.append(mask_img) rec_imgs = torch.concat(rec_imgs, dim=0) mask_imgs = torch.concat(mask_imgs, dim=0) # Build images from patches rec_imgs = rearrange(rec_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)', h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1) mask_imgs = rearrange(mask_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)', h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1) # Cut padded images back to original size rec_imgs_full = rec_imgs[..., :original_h, :original_w] mask_imgs_full = mask_imgs[..., :original_h, :original_w] batch_full = batch[..., :original_h, :original_w] # Build RGB images for d in meta_data: d.update(count=3, dtype='uint8', compress='lzw', nodata=0) outputs = extract_rgb_imgs(batch_full[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...], channels, mean, std) print("Done!") return outputs run_inference = partial(predict_on_images, config_path=config_path,checkpoint=checkpoint) with gr.Blocks() as demo: gr.Markdown(value='# Prithvi-EO-1.0 image reconstruction demo') gr.Markdown(value=''' Check out our newest model: [Prithvi-EO-2.0-Demo](https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-EO-2.0-Demo). Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. Particularly, the model adopts a self-supervised encoder developed with a ViT architecture and Masked AutoEncoder learning strategy, with a MSE as a loss function. The model includes spatial attention across multiple patchies and also temporal attention for each patch. More info about the model and its weights are available [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M).\n This demo showcases the image reconstruction over one to three timestamps. The model randomly masks out some proportion of the images and reconstructs them based on the not masked portion of the images. The reconstructed images are merged with the visible unmasked patches. We recommend submitting images of size 224 to ~1000 pixels for faster processing time. Images bigger than 224x224 are processed using a sliding window approach which can lead to artefacts between patches.\n The user needs to provide the HLS geotiff images, including the following channels in reflectance units: Blue, Green, Red, Narrow NIR, SWIR, SWIR 2. Some example images are provided at the end of this page. ''') with gr.Row(): with gr.Column(): inp_files = gr.Files(elem_id='files') # inp_slider = gr.Slider(0, 100, value=50, label="Mask ratio", info="Choose ratio of masking between 0 and 100", elem_id='slider'), btn = gr.Button("Submit") with gr.Row(): gr.Markdown(value='## Input time series') gr.Markdown(value='## Masked images') gr.Markdown(value='## Reconstructed images*') original = [] masked = [] predicted = [] timestamps = [] for t in range(3): timestamps.append(gr.Column(visible=t == 0)) with timestamps[t]: #with gr.Row(): # gr.Markdown(value=f"Timestamp {t+1}") with gr.Row(): original.append(gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)) masked.append(gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)) predicted.append(gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)) gr.Markdown(value='\* The reconstructed images include the ground truth unmasked patches.') btn.click(fn=run_inference, inputs=inp_files, outputs=original + masked + predicted) with gr.Row(): gr.Examples(examples=[[[ os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif") ]],[[ os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T17RMP.2018004T155509.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T17RMP.2018036T155452.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T17RMP.2018068T155438.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif") ]],[[ os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T18TVL.2018029T154533.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T18TVL.2018141T154435.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"), os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T18TVL.2018189T154446.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif") ]]], inputs=inp_files, outputs=original + masked + predicted, fn=run_inference, cache_examples=True ) def update_visibility(files): timestamps = [gr.Column(visible=t < len(files)) for t in range(3)] return timestamps inp_files.change(update_visibility, inp_files, timestamps) demo.launch(share=True, ssr_mode=False)