Spaces:
Running
Running
update app.py
Browse files- app.py +21 -13
- models/fm4m.py +14 -7
app.py
CHANGED
@@ -79,7 +79,7 @@ smiles_image_mapping = {
|
|
79 |
"Mol 5": {"smiles": "C=CCS[C@@H](C)CC(=O)OCC", "image": "img/img5.png"} # Example SMILES for chloroethane
|
80 |
}
|
81 |
|
82 |
-
datasets = ["","BACE", "ESOL", "Custom Dataset"]
|
83 |
|
84 |
models_enabled = ["SELFIES-TED", "MHG-GED", "MolFormer", "SMI-TED"]
|
85 |
|
@@ -115,12 +115,26 @@ def evaluate_and_log(models, dataset, task_type, eval_output):
|
|
115 |
return log_df
|
116 |
|
117 |
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
|
121 |
# Load images for selection
|
122 |
def load_image(path):
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
|
125 |
|
126 |
# Function to handle image selection
|
@@ -199,6 +213,7 @@ def generate_canonical(smiles):
|
|
199 |
latent_vec, mask = encode([selfie])
|
200 |
gen_mol = None
|
201 |
for i in range(5, 51):
|
|
|
202 |
noise = i / 10
|
203 |
perturbed_latent = perturb_latent(latent_vec, noise_scale=noise)
|
204 |
gen = generate(perturbed_latent, mask)
|
@@ -207,6 +222,7 @@ def generate_canonical(smiles):
|
|
207 |
|
208 |
if gen_mol:
|
209 |
# Calculate properties for ref and gen molecules
|
|
|
210 |
ref_properties = calculate_properties(smiles)
|
211 |
gen_properties = calculate_properties(gen_mol)
|
212 |
tanimoto_similarity = calculate_tanimoto(smiles, gen_mol)
|
@@ -221,6 +237,7 @@ def generate_canonical(smiles):
|
|
221 |
df = pd.DataFrame(data)
|
222 |
|
223 |
# Display molecule image of canonical smiles
|
|
|
224 |
mol_image = smiles_to_image(gen_mol)
|
225 |
|
226 |
return df, gen_mol, mol_image
|
@@ -393,6 +410,7 @@ def display_plot(plot_type):
|
|
393 |
|
394 |
# Predefined dataset paths (these should be adjusted to your file paths)
|
395 |
predefined_datasets = {
|
|
|
396 |
"BACE": f"./data/bace/train.csv, ./data/bace/test.csv, smiles, Class",
|
397 |
"ESOL": f"./data/esol/train.csv, ./data/esol/test.csv, smiles, prop",
|
398 |
}
|
@@ -426,16 +444,6 @@ def handle_dataset_selection(selected_dataset):
|
|
426 |
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(
|
427 |
visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
428 |
else:
|
429 |
-
#[dataset_name, train_file, train_display, test_file, test_display, predefined_display,
|
430 |
-
# input_column_selector, output_column_selector]
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
# Load the predefined dataset from its local path
|
435 |
-
#return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(
|
436 |
-
# visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
437 |
-
#return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(
|
438 |
-
# visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
439 |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(
|
440 |
visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
441 |
|
|
|
79 |
"Mol 5": {"smiles": "C=CCS[C@@H](C)CC(=O)OCC", "image": "img/img5.png"} # Example SMILES for chloroethane
|
80 |
}
|
81 |
|
82 |
+
datasets = [" ", "BACE", "ESOL", "Load Custom Dataset"]
|
83 |
|
84 |
models_enabled = ["SELFIES-TED", "MHG-GED", "MolFormer", "SMI-TED"]
|
85 |
|
|
|
115 |
return log_df
|
116 |
|
117 |
|
118 |
+
try:
|
119 |
+
log_df = pd.read_csv('log.csv', index_col=0)
|
120 |
+
except:
|
121 |
+
log_df = pd.DataFrame({"":[],
|
122 |
+
'Selected Models': [],
|
123 |
+
'Dataset': [],
|
124 |
+
'Task': [],
|
125 |
+
'Result': []
|
126 |
+
})
|
127 |
+
csv_file_path = 'log.csv'
|
128 |
+
log_df.to_csv(csv_file_path, index=False)
|
129 |
|
130 |
|
131 |
# Load images for selection
|
132 |
def load_image(path):
|
133 |
+
try:
|
134 |
+
return Image.open(smiles_image_mapping[path]["image"])# Image.1open(path)
|
135 |
+
except:
|
136 |
+
pass
|
137 |
+
|
138 |
|
139 |
|
140 |
# Function to handle image selection
|
|
|
213 |
latent_vec, mask = encode([selfie])
|
214 |
gen_mol = None
|
215 |
for i in range(5, 51):
|
216 |
+
print("Searching Latent space")
|
217 |
noise = i / 10
|
218 |
perturbed_latent = perturb_latent(latent_vec, noise_scale=noise)
|
219 |
gen = generate(perturbed_latent, mask)
|
|
|
222 |
|
223 |
if gen_mol:
|
224 |
# Calculate properties for ref and gen molecules
|
225 |
+
print("calculating properties")
|
226 |
ref_properties = calculate_properties(smiles)
|
227 |
gen_properties = calculate_properties(gen_mol)
|
228 |
tanimoto_similarity = calculate_tanimoto(smiles, gen_mol)
|
|
|
237 |
df = pd.DataFrame(data)
|
238 |
|
239 |
# Display molecule image of canonical smiles
|
240 |
+
print("Getting image")
|
241 |
mol_image = smiles_to_image(gen_mol)
|
242 |
|
243 |
return df, gen_mol, mol_image
|
|
|
410 |
|
411 |
# Predefined dataset paths (these should be adjusted to your file paths)
|
412 |
predefined_datasets = {
|
413 |
+
" ": " ",
|
414 |
"BACE": f"./data/bace/train.csv, ./data/bace/test.csv, smiles, Class",
|
415 |
"ESOL": f"./data/esol/train.csv, ./data/esol/test.csv, smiles, prop",
|
416 |
}
|
|
|
444 |
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(
|
445 |
visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
446 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(
|
448 |
visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
449 |
|
models/fm4m.py
CHANGED
@@ -308,7 +308,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
308 |
verbose=False)
|
309 |
n_samples = np.minimum(1000, len(x_batch))
|
310 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
311 |
-
x = y_batch.values[:n_samples]
|
|
|
312 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
313 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
314 |
|
@@ -340,7 +341,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
340 |
reducer = umap.UMAP(metric='euclidean', n_neighbors= 10, n_components=2, low_memory=True, min_dist=0.1, verbose=False)
|
341 |
n_samples = np.minimum(1000,len(x_batch))
|
342 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
343 |
-
x = y_batch.values[:n_samples]
|
|
|
344 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
345 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
346 |
|
@@ -371,7 +373,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
371 |
verbose=False)
|
372 |
n_samples = np.minimum(1000, len(x_batch))
|
373 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
374 |
-
x = y_batch.values[:n_samples]
|
|
|
375 |
#index_0 = [index for index in range(len(x)) if x[index] == 0]
|
376 |
#index_1 = [index for index in range(len(x)) if x[index] == 1]
|
377 |
|
@@ -398,7 +401,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
398 |
verbose=False)
|
399 |
n_samples = np.minimum(1000, len(x_batch))
|
400 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
401 |
-
x = y_batch.values[:n_samples]
|
|
|
402 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
403 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
404 |
|
@@ -426,7 +430,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
426 |
verbose=False)
|
427 |
n_samples = np.minimum(1000, len(x_batch))
|
428 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
429 |
-
x = y_batch.values[:n_samples]
|
|
|
430 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
431 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
432 |
|
@@ -454,7 +459,8 @@ def single_modal(model,dataset, downstream_model,params):
|
|
454 |
verbose=False)
|
455 |
n_samples = np.minimum(1000, len(x_batch))
|
456 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
457 |
-
x = y_batch.values[:n_samples]
|
|
|
458 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
459 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
460 |
|
@@ -546,7 +552,8 @@ def multi_modal(model_list,dataset, downstream_model,params):
|
|
546 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
547 |
|
548 |
if "Classifier" in downstream_model:
|
549 |
-
x = y_batch.values[:n_samples]
|
|
|
550 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
551 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
552 |
|
|
|
308 |
verbose=False)
|
309 |
n_samples = np.minimum(1000, len(x_batch))
|
310 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
311 |
+
try:x = y_batch.values[:n_samples]
|
312 |
+
except:x = y_batch[:n_samples]
|
313 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
314 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
315 |
|
|
|
341 |
reducer = umap.UMAP(metric='euclidean', n_neighbors= 10, n_components=2, low_memory=True, min_dist=0.1, verbose=False)
|
342 |
n_samples = np.minimum(1000,len(x_batch))
|
343 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
344 |
+
try:x = y_batch.values[:n_samples]
|
345 |
+
except:x = y_batch[:n_samples]
|
346 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
347 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
348 |
|
|
|
373 |
verbose=False)
|
374 |
n_samples = np.minimum(1000, len(x_batch))
|
375 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
376 |
+
try:x = y_batch.values[:n_samples]
|
377 |
+
except:x = y_batch[:n_samples]
|
378 |
#index_0 = [index for index in range(len(x)) if x[index] == 0]
|
379 |
#index_1 = [index for index in range(len(x)) if x[index] == 1]
|
380 |
|
|
|
401 |
verbose=False)
|
402 |
n_samples = np.minimum(1000, len(x_batch))
|
403 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
404 |
+
try:x = y_batch.values[:n_samples]
|
405 |
+
except:x = y_batch[:n_samples]
|
406 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
407 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
408 |
|
|
|
430 |
verbose=False)
|
431 |
n_samples = np.minimum(1000, len(x_batch))
|
432 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
433 |
+
try:x = y_batch.values[:n_samples]
|
434 |
+
except:x = y_batch[:n_samples]
|
435 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
436 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
437 |
|
|
|
459 |
verbose=False)
|
460 |
n_samples = np.minimum(1000, len(x_batch))
|
461 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
462 |
+
try:x = y_batch.values[:n_samples]
|
463 |
+
except:x = y_batch[:n_samples]
|
464 |
# index_0 = [index for index in range(len(x)) if x[index] == 0]
|
465 |
# index_1 = [index for index in range(len(x)) if x[index] == 1]
|
466 |
|
|
|
552 |
features_umap = reducer.fit_transform(x_batch[:n_samples])
|
553 |
|
554 |
if "Classifier" in downstream_model:
|
555 |
+
try:x = y_batch.values[:n_samples]
|
556 |
+
except: x = y_batch[:n_samples]
|
557 |
index_0 = [index for index in range(len(x)) if x[index] == 0]
|
558 |
index_1 = [index for index in range(len(x)) if x[index] == 1]
|
559 |
|