Spaces:
Running
Running
File size: 15,465 Bytes
05398d1 ecb1e20 05398d1 ecb1e20 05398d1 ecb1e20 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 0f8e886 05398d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import hashlib
import os
import pandas as pd
import plotly.express as px
import streamlit as st
from bat import Benchmark, Config, Reporter, Tester
from bat.utils import get_holistic_benchmark
benchmarks_dict = {
"arena_elo": "LMSys Arena",
"mt_bench": "MT Bench",
"mixeval": "Mix Eval",
"alpacav2": "AlpacaEval V2",
"arena_hard": "Arena Hard",
"arc_c": "ARC-C",
"eq_benchv2": "EQ Bench V2",
"agieval": "AGIEval",
"llmonitor": "LLMonitor",
"bbh": "BBH",
"mmlu": "MMLU",
"alpacav1": "AlpacaEval V1",
"magi": "MAGI",
"alpacaeval2_lc": "AlpacaEval V2 Length Adjusted",
"gpt4all": "GPT-4-All",
"humaneval": "HumanEval",
"mbpp": "MBPP",
"hellaswag": "HellaSwag",
"hugging_6": "HF OpenLLM V1",
"winogrande": "Winogrande",
}
st.markdown(
"""<h1 style='text-align: center; color: black;'>🏋️♂️ BenchBench Leaderboard 🏋️♂️</h1>""",
unsafe_allow_html=True,
)
st.markdown(
"We are excited to share the BenchBench-Leaderboard, a crucial component of our comprehensive research on Benchmark Agreement Testing (BAT) [work](#). "
"This leaderboard is a meta-benchmark that ranks benchmarks based on their agreement with the crowd harnessing many different references. "
)
all_scenarios_for_aggragate = get_holistic_benchmark().get_scenarios()
st.subheader("The Leaderboard", divider=True)
# st.subheader("🏋️♂️ BenchBench Leaderboard 🏋", divider=True)
leftcol, rightcol = st.columns([2, 1])
with leftcol:
with st.expander("Leaderboard configurations (defaults are great BTW)", icon="⚙️"):
with st.form("my_form"):
all_scenarios_for_aggragate_with_all = all_scenarios_for_aggragate.tolist()
all_scenarios_for_aggragate_with_all.append("All Holistic")
aggragate_scenarios = st.multiselect(
"Scenarios in Aggregate",
all_scenarios_for_aggragate_with_all,
["All Holistic"],
# all_scenarios_for_aggragate,
)
corr_type = st.selectbox(
label="Select Correlation type", options=["kendall", "pearson"], index=0
)
aggragate_scenario_blacklist = (
[
scen
for scen in all_scenarios_for_aggragate
if scen not in aggragate_scenarios
]
if "All Holistic" not in aggragate_scenarios
else []
)
model_select_strategy = st.selectbox(
label="Select strategy",
options=["random", "top_aggregate", "somewhere_aggregate"],
index=0,
)
n_models_taken_list = [5]
n_exps = 10
submitted = st.form_submit_button(label="Run BAT")
with rightcol:
st.button("➕ Add your benchmark here!")
def run_load(
aggragate_scenario_blacklist=[],
n_models_taken_list=[5],
model_select_strategy_list=["random"],
corr_types=["kendall"],
n_exps=10,
):
# Create a hash of the inputs to generate a unique cache file for each set of inputs
input_str = (
str(aggragate_scenario_blacklist)
+ str(n_models_taken_list)
+ str(model_select_strategy_list)
+ str(corr_types)
+ str(n_exps)
)
input_hash = hashlib.md5(input_str.encode()).hexdigest()
cache_file = f"agreements_cache_{input_hash}.csv"
# Define the cache directory
cache_dir = "cache"
cache_path = os.path.join(cache_dir, cache_file)
# Check if the cache file exists
if os.path.exists(cache_path):
print("Loading cached results...")
agreements = pd.read_csv(cache_path)
return agreements
else:
print("Cached results not found, calculating")
cfg = Config(
exp_to_run="example",
n_models_taken_list=n_models_taken_list,
model_select_strategy_list=model_select_strategy_list,
corr_types=corr_types,
n_exps=n_exps if n_models_taken_list != [0] else 1,
# reference_data_path="data/combined_holistic.csv",
)
holistic = get_holistic_benchmark()
holistic_scenarios = holistic.get_scenarios()
holistic.clear_repeated_scenarios()
holistic.add_aggragete(
new_col_name="aggregate",
agg_source_name="holistic",
scenario_blacklist=aggragate_scenario_blacklist,
min_scenario_for_models_to_appear_in_agg=5,
)
allbench = Benchmark(
pd.read_csv("assets/combined_20240704.csv"),
# data_source=newbench_name,
)
allbench.df = allbench.df.drop(columns=["tag"])
allbench.clear_repeated_scenarios()
allbench.df = allbench.df.query("scenario not in @holistic_scenarios")
allbench.df = allbench.df[~allbench.df["scenario"].str.contains("_mixed")]
allbench.df = allbench.df[~allbench.df["scenario"].str.contains("agentbench")]
# st.dataframe(holistic.df.query('scenario=="aggregate"'))
allbench = allbench.extend(holistic)
tester = Tester(cfg=cfg)
# len(allbench.get_scenario_appearences_count().keys())
agreements = tester.all_vs_all_agreement_testing(
allbench, single_source_scenario="aggregate"
)
agreements.to_csv(cache_path, index=False)
return agreements
agreements = run_load(
aggragate_scenario_blacklist=aggragate_scenario_blacklist,
n_models_taken_list=n_models_taken_list,
model_select_strategy_list=[model_select_strategy],
corr_types=[corr_type],
n_exps=n_exps,
)
reporter = Reporter()
z_scores = reporter.get_all_z_scores(agreements=agreements, aggragate_name="aggregate")
corr_name = f"{'KT' if corr_type=='kendall' else 'Per.'} Corr."
z_scores["z_score"] = z_scores["z_score"].round(2)
z_scores["corr_with_agg"] = z_scores["corr_with_agg"].round(2)
z_scores["p_value_of_corr_with_agg"] = z_scores["p_value_of_corr_with_agg"].round(2)
data = (
z_scores.rename(
columns={
"scenario": "Benchmark",
"z_score": "Z Score",
"corr_with_agg": corr_name,
"p_value_of_corr_with_agg": "p value of Corr.",
"source": "Source",
}
)
.sort_values("Z Score", ascending=False)
.reset_index(drop=True)
)
data = data[~data["Source"].str.contains("livebench")]
data = data[~data["Source"].str.contains("biggen")]
data.drop(columns=["Source"], inplace=True)
data["Benchmark"] = data["Benchmark"].apply(lambda x: benchmarks_dict[x])
# Apply coloring based on 'Z' valuesz
styled_data = data.style.background_gradient(
subset=["Z Score"],
cmap="RdYlGn",
vmin=-data["Z Score"].abs().max(),
vmax=data["Z Score"].abs().max(),
).format(subset=["Z Score", corr_name, "p value of Corr."], formatter="{:.2}")
st.dataframe(
data=styled_data,
hide_index=True,
use_container_width=True,
height=300,
)
st.markdown(
"BenchBench-Leaderboard complements our study, where we analyzed over 40 prominent benchmarks and introduced standardized practices to enhance the robustness and validity of benchmark evaluations through the [BenchBench Python package](#). "
"The BenchBench-Leaderboard serves as a dynamic platform for benchmark comparison and is an essential tool for researchers and practitioners in the language model field aiming to select and utilize benchmarks effectively. "
)
st.subheader("How did we get the Z Scores?", divider=True)
st.write(r"""
Section 3.1 in our work shows how using a single reference benchmark drastically hurts the roubustness and validity of BAT.
To remedy this, we propose to test benchmark agreement with an aggragate benchmark and compare the agreement to other benchmarks.
We recommend to perform this comparison using the [Z score](https://en.wikipedia.org/wiki/Standard_score) and demonstrate obtaining it to a benchmark of your selection.
In the follwing way: $z_i=(x_i-\mu_{i...N}) / \sigma_{i...N}$ where $x_i$ is the agreement of the $i$th benchmark to the aggragate and $\mu_{i...N}$,$\sigma_{i...N}$ are the
mean and standard deviation of the agreements of the other benchmarks to the aggragate.
""")
benchmarks = data["Benchmark"].unique().tolist()
plotted_scenario = st.selectbox(
"Choose Benchmark to plot", benchmarks, index=benchmarks.index("LMSys Arena")
)
fig = px.histogram(
data.query("Benchmark!=@plotted_scenario"), x=corr_name, nbins=len(data) - 1
)
# Add a vertical line at a specific x-coordinate
# Replace 'x_value' with the actual value where you want the line
x_value = 0.5 # Example value, adjust as necessary
fig.add_vline(
x=data.query("Benchmark==@plotted_scenario")[corr_name].iloc[0],
line_dash="dash",
line_color="red",
)
# Update layout to add a title
fig.update_layout(
title="Histogram of Correlation Values", # Change the title text as needed
title_x=0.3, # Centers the title
title_font=dict(size=20, family="CMU"), # Customize font if needed
)
# # Plot!
st.plotly_chart(fig, use_container_width=True)
st.subheader("Why should you use the BenchBench Leaderboard?")
st.markdown(
"""
Current practices in Benchmark Agreement Testing (BAT) often suffer from a lack of standardization and transparency, which can lead to inconsistent results and diminished trust in benchmark evaluations. Several key issues are prevalent in the field:
"""
)
st.markdown(
"""
- **Lack of Standard Methodologies:** Unlike other scientific procedures that follow rigorous methodologies, BAT lacks uniform procedures across different studies. Researchers often employ varied criteria for selecting benchmarks and models for comparison, which leads to results that cannot be easily compared or replicated. This variation undermines the reliability of conclusions drawn from BAT and makes it difficult for other researchers to build on existing work.
"""
)
st.image(
"assets/motivation.png",
caption="Conclusions depend on the models considered. Kendall-tau correlations between the LMSys Arena benchmark and three other benchmarks: BBH, MMLU, and Alpaca v2. Each group of bars represents the correlation for different sets of top models, specifically the top 5, top 10, and top 15 (overlapping) models (according to the Arena). The results indicate that the degree of agreement between benchmarks varies with the number of top models considered, highlighting that different selections of models can lead to varying conclusions about benchmark agreement.",
use_column_width=True,
)
st.markdown(
"""
- **Arbitrary Selection of Reference Benchmarks:** One of the most critical decisions in BAT is the choice of reference benchmarks. Currently, this choice is often arbitrary and lacks a clear rationale, influenced by availability or personal preference rather than strategic alignment with the benchmark’s purpose. This can skew the results significantly, as different benchmarks may not be equally representative or relevant to the models being tested.
"""
)
st.markdown(
"""
- **Inadequate Model Representation:** BAT frequently relies on a limited subset of models, which may not comprehensively represent the diversity of architectures and training paradigms in modern language models. This selective representation can lead to biased agreement scores that favor certain types of models over others, failing to provide a holistic view of model performance across different benchmarks.
"""
)
st.image(
"assets/pointplot_granularity_matters.png",
caption="Correlations increase with number of models. Mean correlation (y) between each benchmark (lines) and the rest, given different numbers of models. The Blue and Orange lines are the average of all benchmark pair correlations with models sampled randomly (orange) or in contiguous sets (blue). The shaded lines represents adjacent sampling for the different benchmarks.",
use_column_width=True,
)
st.markdown(
"""
- **Overemphasis on Correlation Metrics:** Current BAT practices tend to over-rely on correlation metrics without adequately considering their limitations and the context of their application. While these metrics can provide useful insights, they are often treated as definitive evidence of agreement without acknowledging that high correlation does not necessarily imply conceptual alignment between benchmarks.
"""
)
st.markdown(
"""
To address these issues, there is a critical need for a more structured approach to BAT that includes clear guidelines for benchmark and model selection, a broader consideration of agreement metrics, and an acknowledgment of the evolving nature of technology in this space. By reforming BAT practices, the research community can improve the reliability and utility of benchmarks as tools for evaluating and advancing language models.
"""
)
st.image(
"assets/ablations.png",
caption="Our recommendations substantially reduce the variance of BAT. Ablation analysis for each BAT recommendation separately and their combinations.",
use_column_width=True,
)
st.header("The BenchBench package")
st.markdown("""
### Overview
The BAT package is designed to facilitate benchmark agreement testing for NLP models. It allows users to easily compare multiple models against various benchmarks and generate comprehensive reports on their agreement.
### Installation
To install the BAT package, you can use pip:
```
pip install bat-package
```
### Usage Example
Below is a step-by-step example of how to use the BAT package to perform agreement testing.
#### Step 1: Configuration
First, set up the configuration for the tests:
```python
import pandas as pd
from bat import Tester, Config, Benchmark, Reporter
from bat.utils import get_holistic_benchmark
cfg = Config(
exp_to_run="example",
n_models_taken_list=[0],
model_select_strategy_list=["random"],
n_exps=10
)
```
#### Step 2: Fetch Model Names
Fetch the names of the reference models to be used for scoring:
```python
tester = Tester(cfg=cfg)
models_for_benchmark_scoring = tester.fetch_reference_models_names(
reference_benchmark=get_holistic_benchmark(), n_models=20
)
print(models_for_benchmark_scoring)
```
#### Step 3: Load and Prepare Benchmark
Load a new benchmark and add an aggregate column:
```python
newbench_name = "fakebench"
newbench = Benchmark(
pd.read_csv(f"src/bat/assets/{newbench_name}.csv"),
data_source=newbench_name,
)
newbench.add_aggregate(new_col_name=f"{newbench_name}_mwr")
```
#### Step 4: Agreement Testing
Perform all-vs-all agreement testing on the new benchmark:
```python
newbench_agreements = tester.all_vs_all_agreement_testing(newbench)
reporter = Reporter()
reporter.draw_agreements(newbench_agreements)
```
#### Step 5: Extend and Clean Benchmark
Extend the new benchmark with holistic data and clear repeated scenarios:
```python
allbench = newbench.extend(get_holistic_benchmark())
allbench.clear_repeated_scenarios(source_to_keep=newbench_name)
```
#### Step 6: Comprehensive Agreement Testing
Perform comprehensive agreement testing and visualize:
```python
all_agreements = tester.all_vs_all_agreement_testing(allbench)
reporter.draw_agreements(all_agreements)
```
""")
|