SagiPolaczek
commited on
Commit
β’
ff01709
1
Parent(s):
d61ac75
Upload 3 files
Browse files- README.md +5 -4
- app.py +126 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
-
title: Biomed
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Biomed-multi-alignment Protein-Protein-Interaction
|
3 |
+
emoji: π
|
4 |
+
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.4.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
short_description: Demo for MAMMAL approch Protein-Protein Interaction query
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
|
5 |
+
from mammal.model import Mammal
|
6 |
+
from mammal.keys import *
|
7 |
+
|
8 |
+
|
9 |
+
model_path = "ibm/biomed.omics.bl.sm.ma-ted-458m"
|
10 |
+
# Load Model
|
11 |
+
model = Mammal.from_pretrained(model_path)
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
# Load Tokenizer
|
15 |
+
tokenizer_op = ModularTokenizerOp.from_pretrained(model_path)
|
16 |
+
|
17 |
+
# token for positive binding
|
18 |
+
positive_token_id = tokenizer_op.get_token_id("<1>")
|
19 |
+
|
20 |
+
# Default input proteins
|
21 |
+
protein_calmodulin = "MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMISELDQDGFIDKEDLHDGDGKISFEEFLNLVNKEMTADVDGDGQVNYEEFVTMMTSK"
|
22 |
+
protein_calcineurin = "MSSKLLLAGLDIERVLAEKNFYKEWDTWIIEAMNVGDEEVDRIKEFKEDEIFEEAKTLGTAEMQEYKKQKLEEAIEGAFDIFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIRQMWDQNGDWDRIKELKFGEIKKLSAKDTRGTIFIKVFENLGTGVDSEYEDVSKYMLKHQ"
|
23 |
+
|
24 |
+
|
25 |
+
def format_prompt(prot1, prot2):
|
26 |
+
# Formatting prompt to match pre-training syntax
|
27 |
+
return f"<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0><MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN><SEQUENCE_NATURAL_START>{prot1}<SEQUENCE_NATURAL_END><MOLECULAR_ENTITY><MOLECULAR_ENTITY_GENERAL_PROTEIN><SEQUENCE_NATURAL_START>{prot2}<SEQUENCE_NATURAL_END><EOS>"
|
28 |
+
|
29 |
+
|
30 |
+
def run_prompt(prompt):
|
31 |
+
# Create and load sample
|
32 |
+
sample_dict = dict()
|
33 |
+
sample_dict[ENCODER_INPUTS_STR] = prompt
|
34 |
+
|
35 |
+
# Tokenize
|
36 |
+
sample_dict = tokenizer_op(
|
37 |
+
sample_dict=sample_dict,
|
38 |
+
key_in=ENCODER_INPUTS_STR,
|
39 |
+
key_out_tokens_ids=ENCODER_INPUTS_TOKENS,
|
40 |
+
key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK,
|
41 |
+
)
|
42 |
+
sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor(
|
43 |
+
sample_dict[ENCODER_INPUTS_TOKENS]
|
44 |
+
)
|
45 |
+
sample_dict[ENCODER_INPUTS_ATTENTION_MASK] = torch.tensor(
|
46 |
+
sample_dict[ENCODER_INPUTS_ATTENTION_MASK]
|
47 |
+
)
|
48 |
+
|
49 |
+
# Generate Prediction
|
50 |
+
batch_dict = model.generate(
|
51 |
+
[sample_dict],
|
52 |
+
output_scores=True,
|
53 |
+
return_dict_in_generate=True,
|
54 |
+
max_new_tokens=5,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Get output
|
58 |
+
generated_output = tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0])
|
59 |
+
score = batch_dict["model.out.scores"][0][1][positive_token_id].item()
|
60 |
+
|
61 |
+
return generated_output, score
|
62 |
+
|
63 |
+
|
64 |
+
def create_and_run_prompt(prot1, prot2):
|
65 |
+
prompt = format_prompt(prot1, prot2)
|
66 |
+
res = prompt, *run_prompt(prompt=prompt)
|
67 |
+
return res
|
68 |
+
|
69 |
+
|
70 |
+
def create_application():
|
71 |
+
markup_text = f"""
|
72 |
+
# Mammal based Protein-Protein Interaction (PPI) demonstration
|
73 |
+
|
74 |
+
Given two protein sequences, estimate if the proteins interact or not.
|
75 |
+
|
76 |
+
### Using the model from
|
77 |
+
|
78 |
+
```{model_path} ```
|
79 |
+
"""
|
80 |
+
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
gr.Markdown(markup_text)
|
83 |
+
with gr.Row():
|
84 |
+
prot1 = gr.Textbox(
|
85 |
+
label="Protein 1 sequence",
|
86 |
+
# info="standard",
|
87 |
+
interactive=True,
|
88 |
+
lines=1,
|
89 |
+
value=protein_calmodulin,
|
90 |
+
)
|
91 |
+
prot2 = gr.Textbox(
|
92 |
+
label="Protein 2 sequence",
|
93 |
+
# info="standard",
|
94 |
+
interactive=True,
|
95 |
+
lines=1,
|
96 |
+
value=protein_calcineurin,
|
97 |
+
)
|
98 |
+
with gr.Row():
|
99 |
+
run_mammal = gr.Button(
|
100 |
+
"Run Mammal prompt for Protein-Protein Interaction", variant="primary"
|
101 |
+
)
|
102 |
+
with gr.Row():
|
103 |
+
prompt_box = gr.Textbox(label="Mammal prompt", lines=5)
|
104 |
+
|
105 |
+
with gr.Row():
|
106 |
+
decoded = gr.Textbox(label="Mammal output")
|
107 |
+
run_mammal.click(
|
108 |
+
fn=create_and_run_prompt,
|
109 |
+
inputs=[prot1, prot2],
|
110 |
+
outputs=[prompt_box, decoded, gr.Number(label="PPI score")],
|
111 |
+
)
|
112 |
+
with gr.Row():
|
113 |
+
gr.Markdown(
|
114 |
+
"```<SENTINEL_ID_0>``` contains the binding affinity class, which is ```<1>``` for interacting and ```<0>``` for non-interacting"
|
115 |
+
)
|
116 |
+
|
117 |
+
return demo
|
118 |
+
|
119 |
+
|
120 |
+
def main():
|
121 |
+
demo = create_application()
|
122 |
+
demo.launch(show_error=True, share=True)
|
123 |
+
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# for the mammal demo app
|
2 |
+
mammal @ git+https://github.com/BiomedSciAI/biomed-multi-alignment.git
|