File size: 3,699 Bytes
19dfa7a
 
93d0d1a
 
 
 
 
19dfa7a
 
 
 
 
 
 
93d0d1a
 
 
19dfa7a
 
 
93d0d1a
19dfa7a
 
93d0d1a
19dfa7a
93d0d1a
19dfa7a
93d0d1a
19dfa7a
 
93d0d1a
19dfa7a
93d0d1a
 
 
19dfa7a
93d0d1a
19dfa7a
93d0d1a
 
19dfa7a
 
 
 
 
93d0d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19dfa7a
 
 
93d0d1a
 
 
 
 
 
 
 
 
 
 
19dfa7a
93d0d1a
19dfa7a
93d0d1a
 
 
 
 
 
 
 
 
 
 
 
 
19dfa7a
93d0d1a
 
 
 
 
fda141d
93d0d1a
 
19dfa7a
 
93d0d1a
 
fda141d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from abc import ABC, abstractmethod

import gradio as gr
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
from mammal.model import Mammal


class MammalObjectBroker:
    def __init__(
        self,
        model_path: str,
        name: str | None = None,
        task_list: list[str] | None = None,
    ) -> None:
        self.model_path = model_path
        if name is None:
            name = model_path
        self.name = name

        self.tasks: list[str] = []
        if task_list is not None:
            self.tasks = task_list
        self._model: Mammal | None = None
        self._tokenizer_op = None

    @property
    def model(self) -> Mammal:
        if self._model is None:
            self._model = Mammal.from_pretrained(self.model_path)
        self._model.eval()
        return self._model

    @property
    def tokenizer_op(self):
        if self._tokenizer_op is None:
            self._tokenizer_op = ModularTokenizerOp.from_pretrained(self.model_path)
        return self._tokenizer_op


class MammalTask(ABC):
    def __init__(self, name: str, model_dict: dict[str, MammalObjectBroker]) -> None:
        self.name = name
        self.description = None
        self._demo = None
        self.model_dict = model_dict

    # @abstractmethod
    # def _generate_prompt(self, **kwargs) -> str:
    #     """Formatting prompt to match pre-training syntax

    #     Args:
    #         prot1 (_type_): _description_
    #         prot2 (_type_): _description_

    #     Raises:
    #         No: _description_
    #     """
    #     raise NotImplementedError()

    @abstractmethod
    def crate_sample_dict(
        self, sample_inputs: dict, model_holder: MammalObjectBroker
    ) -> dict:
        """Formatting prompt to match pre-training syntax

        Args:
            prompt (str): _description_

        Returns:
            dict: sample_dict for feeding into model
        """
        raise NotImplementedError()

    # @abstractmethod
    def run_model(self, sample_dict, model: Mammal):
        raise NotImplementedError()

    def create_demo(self, model_name_widget: gr.component) -> gr.Group:
        """create an gradio demo group

        Args:
            model_name_widgit (gr.Component): widget holding the model name to use.  This is needed to create
                gradio actions with the current model name as an input


        Raises:
            NotImplementedError: _description_
        """
        raise NotImplementedError()

    def demo(self, model_name_widgit: gr.component = None):
        if self._demo is None:
            self._demo = self.create_demo(model_name_widget=model_name_widgit)
        return self._demo

    @abstractmethod
    def decode_output(self, batch_dict, model: Mammal) -> list:
        raise NotImplementedError()

    # self._setup()

    # def _setup(self):
    #     pass


class TaskRegistry(dict[str, MammalTask]):
    """just a dictionary with a register method"""

    def register_task(self, task: MammalTask):
        self[task.name] = task
        return task.name


class ModelRegistry(dict[str, MammalObjectBroker]):
    """just a dictionary with a register models"""

    def register_model(self, model_path, task_list=None, name=None):
        """register a model and return the name of the model
        Args:
            model_path (_type_): _description_
            name (optional str): explicit name for the model

        Returns:
            str: model name
        """
        model_holder = MammalObjectBroker(
            model_path=model_path, task_list=task_list, name=name
        )
        self[model_holder.name] = model_holder
        return model_holder.name