Spaces:
Running
Running
File size: 2,920 Bytes
19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a 19dfa7a 93d0d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
from abc import ABC, abstractmethod
import gradio as gr
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp
from mammal.model import Mammal
class MammalObjectBroker:
def __init__(
self,
model_path: str,
name: str | None = None,
task_list: list[str] | None = None,
) -> None:
self.model_path = model_path
if name is None:
name = model_path
self.name = name
self.tasks: list[str] = []
if task_list is not None:
self.tasks = task_list
self._model: Mammal | None = None
self._tokenizer_op = None
@property
def model(self) -> Mammal:
if self._model is None:
self._model = Mammal.from_pretrained(self.model_path)
self._model.eval()
return self._model
@property
def tokenizer_op(self):
if self._tokenizer_op is None:
self._tokenizer_op = ModularTokenizerOp.from_pretrained(self.model_path)
return self._tokenizer_op
class MammalTask(ABC):
def __init__(self, name: str, model_dict: dict[str, MammalObjectBroker]) -> None:
self.name = name
self.description = None
self._demo = None
self.model_dict = model_dict
# @abstractmethod
# def _generate_prompt(self, **kwargs) -> str:
# """Formatting prompt to match pre-training syntax
# Args:
# prot1 (_type_): _description_
# prot2 (_type_): _description_
# Raises:
# No: _description_
# """
# raise NotImplementedError()
@abstractmethod
def crate_sample_dict(
self, sample_inputs: dict, model_holder: MammalObjectBroker
) -> dict:
"""Formatting prompt to match pre-training syntax
Args:
prompt (str): _description_
Returns:
dict: sample_dict for feeding into model
"""
raise NotImplementedError()
# @abstractmethod
def run_model(self, sample_dict, model: Mammal):
raise NotImplementedError()
def create_demo(self, model_name_widget: gr.component) -> gr.Group:
"""create an gradio demo group
Args:
model_name_widgit (gr.Component): widget holding the model name to use. This is needed to create
gradio actions with the current model name as an input
Raises:
NotImplementedError: _description_
"""
raise NotImplementedError()
def demo(self, model_name_widgit: gr.component = None):
if self._demo is None:
model_name_widget: gr.component
self._demo = self.create_demo(model_name_widget=model_name_widgit)
return self._demo
@abstractmethod
def decode_output(self, batch_dict, model: Mammal):
raise NotImplementedError()
# self._setup()
# def _setup(self):
# pass
|