Spaces:
Sleeping
Sleeping
added proper support for name overide in Molnet tasks and a reasonable texts for the new tasks
b64cfbe
from mammal_demo.demo_framework import ( | |
ModelRegistry, | |
TaskRegistry, | |
) | |
from mammal_demo.dti_task import DtiTask | |
from mammal_demo.ppi_task import PpiTask | |
from mammal_demo.ps_task import PsTask | |
from mammal_demo.tcr_task import TcrTask | |
from mammal_demo.molnet_task import MolnetTask | |
def tasks_and_models(): | |
all_tasks = TaskRegistry() | |
all_models = ModelRegistry() | |
# first create the required tasks | |
# Note that the tasks need access to the models, as the model to use depends on the state of the widget | |
# we pass the all_models dict and update it when we actualy have the models. | |
ppi_task_name = all_tasks.register_task(PpiTask(model_dict=all_models)) | |
tdi_task_name = all_tasks.register_task(DtiTask(model_dict=all_models)) | |
ps_task_name = all_tasks.register_task(PsTask(model_dict=all_models)) | |
tcr_task_name = all_tasks.register_task(TcrTask(model_dict=all_models)) | |
bbbp_task = MolnetTask(model_dict=all_models,task_name="BBBP", name= "Blood-Brain Barrier Penetration") | |
bbbp_task.markup_text = """ | |
# Mammal based small molecule blood-brain barrier penetration demonstration | |
Given a drug (in SMILES), estimate the likelihood that it will penetrate the Blood-Brain Barrier. | |
""" | |
bbbp_task_name = all_tasks.register_task(bbbp_task) | |
toxicity_task = MolnetTask(model_dict=all_models,task_name="TOXICITY", name= "Drug Toxicity Trials Failer") | |
toxicity_task.markup_text = """ | |
# Mammal based small molecule toxicity trials failer estimation demonstration | |
Given a drug (in SMILES), estimate the likelihood that it will fail in clinical toxicity trials. | |
""" | |
toxicity_task_name = all_tasks.register_task(toxicity_task) | |
fda_appr_task=MolnetTask(model_dict=all_models,task_name="FDA_APPR", name="drug FDA approval demonstration") | |
fda_appr_task.markup_text = """ | |
# Mammal based small molecule drug FDA approval demonstration | |
Given a drug (in SMILES), estimate the likelihood that it will be approved by the FDA. | |
""" | |
fda_appr_task_name = all_tasks.register_task(fda_appr_task) | |
# create the model holders. hold the model and the tokenizer, lazy download | |
# note that the list of relevent tasks needs to be stated. | |
all_models.register_model( | |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd", | |
task_list=[tdi_task_name], | |
) | |
all_models.register_model( | |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd_peer", | |
task_list=[tdi_task_name], | |
) | |
all_models.register_model( | |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind", | |
task_list=[tcr_task_name], | |
) | |
all_models.register_model( | |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility", | |
task_list=[ps_task_name], | |
) | |
all_models.register_model( | |
model_path="ibm/biomed.omics.bl.sm.ma-ted-458m", | |
task_list=[ppi_task_name], | |
) | |
all_models.register_model( | |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_tox", | |
task_list=[toxicity_task_name] | |
) | |
all_models.register_model( | |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_fda", | |
task_list=[fda_appr_task_name] | |
) | |
all_models.register_model( | |
"ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_bbbp", | |
task_list=[bbbp_task_name], | |
) | |
return all_tasks,all_models | |