Spaces:
Sleeping
Sleeping
added proper support for name overide in Molnet tasks and a reasonable texts for the new tasks
b64cfbe
import gradio as gr | |
from mammal.examples.molnet.molnet_infer import create_sample_dict as molnet_create_sample_dict, get_predictions, process_model_output | |
from mammal.keys import * | |
from mammal.model import Mammal | |
from mammal_demo.demo_framework import MammalObjectBroker, MammalTask | |
class MolnetTask(MammalTask): | |
def __init__(self, model_dict, task_name="BBBP", name=None): | |
if name is None: | |
name=f"Molnet: {task_name}" | |
super().__init__(name=name, model_dict=model_dict) | |
self.description = f"MOLNET {task_name}" | |
self.examples = { | |
"drug_seq": "CC(=O)NCCC1=CNc2c1cc(OC)cc2", | |
} | |
self.task_name=task_name | |
self.markup_text = """ | |
# Mammal demonstration | |
""" | |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker) -> dict: | |
return molnet_create_sample_dict(task_name=self.task_name, smiles_seq=sample_inputs["drug_seq"], tokenizer_op=model_holder.tokenizer_op, model=model_holder.model) | |
def run_model(self, sample_dict, model: Mammal): | |
# Generate Prediction | |
batch_dict = get_predictions(model=model,sample_dict=sample_dict) | |
return batch_dict | |
def decode_output(self, batch_dict, model_holder): | |
result = process_model_output( | |
tokenizer_op=model_holder.tokenizer_op, | |
decoder_output=batch_dict[CLS_PRED][0], | |
decoder_output_scores=batch_dict[SCORES][0], | |
) | |
generated_output = model_holder.tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0]) | |
return generated_output, result['pred'], result['score'] | |
def create_and_run_prompt(self, model_name, drug_seq): | |
model_holder = self.model_dict[model_name] | |
inputs = { | |
"drug_seq": drug_seq, | |
} | |
sample_dict = self.crate_sample_dict( | |
sample_inputs=inputs, model_holder=model_holder | |
) | |
prompt = sample_dict[ENCODER_INPUTS_STR] | |
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model) | |
res = prompt, *self.decode_output(batch_dict, model_holder=model_holder) | |
return res | |
def create_demo(self, model_name_widget): | |
# """ | |
# ### Using the model from | |
# ```{model} ``` | |
# """ | |
with gr.Group() as demo: | |
gr.Markdown(self.markup_text) | |
with gr.Row(): | |
drug_textbox = gr.Textbox( | |
label="Drug sequance (in SMILES)", | |
# info="standard", | |
interactive=True, | |
lines=3, | |
value=self.examples["drug_seq"], | |
) | |
with gr.Row(): | |
run_mammal = gr.Button( | |
"Run Mammal prompt for task", | |
variant="primary", | |
) | |
with gr.Row(): | |
prompt_box = gr.Textbox(label="Mammal prompt", lines=5) | |
with gr.Row(): | |
decoded = gr.Textbox(label="Mammal output") | |
prediction_box=gr.Textbox(label="Mammal prediction") | |
score_box=gr.Number(label="score") | |
run_mammal.click( | |
fn=self.create_and_run_prompt, | |
inputs=[model_name_widget, drug_textbox], | |
outputs=[prompt_box, decoded, prediction_box, score_box], | |
) | |
demo.visible = False | |
return demo | |