matanninio's picture
added proper support for name overide in Molnet tasks and a reasonable texts for the new tasks
b64cfbe
raw
history blame
3.44 kB
import gradio as gr
from mammal.examples.molnet.molnet_infer import create_sample_dict as molnet_create_sample_dict, get_predictions, process_model_output
from mammal.keys import *
from mammal.model import Mammal
from mammal_demo.demo_framework import MammalObjectBroker, MammalTask
class MolnetTask(MammalTask):
def __init__(self, model_dict, task_name="BBBP", name=None):
if name is None:
name=f"Molnet: {task_name}"
super().__init__(name=name, model_dict=model_dict)
self.description = f"MOLNET {task_name}"
self.examples = {
"drug_seq": "CC(=O)NCCC1=CNc2c1cc(OC)cc2",
}
self.task_name=task_name
self.markup_text = """
# Mammal demonstration
"""
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker) -> dict:
return molnet_create_sample_dict(task_name=self.task_name, smiles_seq=sample_inputs["drug_seq"], tokenizer_op=model_holder.tokenizer_op, model=model_holder.model)
def run_model(self, sample_dict, model: Mammal):
# Generate Prediction
batch_dict = get_predictions(model=model,sample_dict=sample_dict)
return batch_dict
def decode_output(self, batch_dict, model_holder):
result = process_model_output(
tokenizer_op=model_holder.tokenizer_op,
decoder_output=batch_dict[CLS_PRED][0],
decoder_output_scores=batch_dict[SCORES][0],
)
generated_output = model_holder.tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0])
return generated_output, result['pred'], result['score']
def create_and_run_prompt(self, model_name, drug_seq):
model_holder = self.model_dict[model_name]
inputs = {
"drug_seq": drug_seq,
}
sample_dict = self.crate_sample_dict(
sample_inputs=inputs, model_holder=model_holder
)
prompt = sample_dict[ENCODER_INPUTS_STR]
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model)
res = prompt, *self.decode_output(batch_dict, model_holder=model_holder)
return res
def create_demo(self, model_name_widget):
# """
# ### Using the model from
# ```{model} ```
# """
with gr.Group() as demo:
gr.Markdown(self.markup_text)
with gr.Row():
drug_textbox = gr.Textbox(
label="Drug sequance (in SMILES)",
# info="standard",
interactive=True,
lines=3,
value=self.examples["drug_seq"],
)
with gr.Row():
run_mammal = gr.Button(
"Run Mammal prompt for task",
variant="primary",
)
with gr.Row():
prompt_box = gr.Textbox(label="Mammal prompt", lines=5)
with gr.Row():
decoded = gr.Textbox(label="Mammal output")
prediction_box=gr.Textbox(label="Mammal prediction")
score_box=gr.Number(label="score")
run_mammal.click(
fn=self.create_and_run_prompt,
inputs=[model_name_widget, drug_textbox],
outputs=[prompt_box, decoded, prediction_box, score_box],
)
demo.visible = False
return demo