Spaces:
Running
Running
import gradio as gr | |
from mammal.examples.dti_bindingdb_kd.task import DtiBindingdbKdTask | |
from mammal.keys import * | |
from mammal.model import Mammal | |
from mammal_demo.demo_framework import MammalObjectBroker, MammalTask | |
class DtiTask(MammalTask): | |
def __init__(self, model_dict): | |
super().__init__(name="Drug-Target Binding Affinity", model_dict=model_dict) | |
self.description = "Drug-Target Binding Affinity (tdi)" | |
self.examples = { | |
"target_seq": "NLMKRCTRGFRKLGKCTTLEEEKCKTLYPRGQCTCSDSKMNTHSCDCKSC", | |
"drug_seq": "CC(=O)NCCC1=CNc2c1cc(OC)cc2", | |
} | |
self.markup_text = """ | |
# Mammal based Drug-Target binding affinity demonstration | |
Given a protein sequence and a drug (in SMILES), estimate the binding affinity. | |
""" | |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker): | |
"""convert sample_inputs to sample_dict including creating a proper prompt | |
Args: | |
sample_inputs (dict): dictionary containing the inputs to the model | |
model_holder (MammalObjectBroker): model holder | |
Returns: | |
dict: sample_dict for feeding into model | |
""" | |
sample_dict = dict(sample_inputs) | |
sample_dict = DtiBindingdbKdTask.data_preprocessing( | |
sample_dict=sample_dict, | |
tokenizer_op=model_holder.tokenizer_op, | |
target_sequence_key="target_seq", | |
drug_sequence_key="drug_seq", | |
norm_y_mean=None, | |
norm_y_std=None, | |
device=model_holder.model.device, | |
) | |
return sample_dict | |
def run_model(self, sample_dict, model: Mammal): | |
# Generate Prediction | |
batch_dict = model.forward_encoder_only([sample_dict]) | |
return batch_dict | |
def decode_output(self, batch_dict, model_holder): | |
# Get output | |
batch_dict = DtiBindingdbKdTask.process_model_output( | |
batch_dict, | |
scalars_preds_processed_key="model.out.dti_bindingdb_kd", | |
norm_y_mean=5.79384684128215, | |
norm_y_std=1.33808027428196, | |
) | |
ans = ( | |
"model.out.dti_bindingdb_kd", | |
float(batch_dict["model.out.dti_bindingdb_kd"][0]), | |
) | |
return ans | |
def create_and_run_prompt(self, model_name, target_seq, drug_seq): | |
model_holder = self.model_dict[model_name] | |
inputs = { | |
"target_seq": target_seq, | |
"drug_seq": drug_seq, | |
} | |
sample_dict = self.crate_sample_dict( | |
sample_inputs=inputs, model_holder=model_holder | |
) | |
prompt = sample_dict[ENCODER_INPUTS_STR] | |
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model) | |
res = prompt, *self.decode_output(batch_dict, model_holder=model_holder) | |
return res | |
def create_demo(self, model_name_widget): | |
# """ | |
# ### Using the model from | |
# ```{model} ``` | |
# """ | |
with gr.Group() as demo: | |
gr.Markdown(self.markup_text) | |
with gr.Row(): | |
target_textbox = gr.Textbox( | |
label="target sequence", | |
# info="standard", | |
interactive=True, | |
lines=3, | |
value=self.examples["target_seq"], | |
) | |
drug_textbox = gr.Textbox( | |
label="Drug sequance (in SMILES)", | |
# info="standard", | |
interactive=True, | |
lines=3, | |
value=self.examples["drug_seq"], | |
) | |
with gr.Row(): | |
run_mammal = gr.Button( | |
"Run Mammal prompt for drug-target binding affinity", | |
variant="primary", | |
) | |
with gr.Row(): | |
prompt_box = gr.Textbox(label="Mammal prompt", lines=5) | |
with gr.Row(): | |
decoded = gr.Textbox(label="Mammal output key") | |
run_mammal.click( | |
fn=self.create_and_run_prompt, | |
inputs=[model_name_widget, target_textbox, drug_textbox], | |
outputs=[prompt_box, decoded, gr.Number(label="binding affinity")], | |
) | |
demo.visible = False | |
return demo | |