Spaces:
Running
Running
import gradio as gr | |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp | |
from mammal.examples.protein_solubility.task import ProteinSolubilityTask | |
from mammal.keys import ( | |
CLS_PRED, | |
ENCODER_INPUTS_STR, | |
SCORES, | |
) | |
from mammal.model import Mammal | |
from mammal_demo.demo_framework import MammalObjectBroker, MammalTask | |
class PsTask(MammalTask): | |
def __init__(self, model_dict): | |
super().__init__(name="Protein Solubility", model_dict=model_dict) | |
self.description = "Protein Solubility (PS)" | |
self.examples = { | |
"protein_seq": "LLQTGIHVRVSQPSL", | |
} | |
self.markup_text = """ | |
# Mammal based protein solubility estimation | |
Given the protein sequance, estimate if it's soluble or insoluble. | |
""" | |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker): | |
"""convert sample_inputs to sample_dict including creating a proper prompt | |
Args: | |
sample_inputs (dict): dictionary containing the inputs to the model | |
model_holder (MammalObjectBroker): model holder | |
Returns: | |
dict: sample_dict for feeding into model | |
""" | |
sample_dict = dict(sample_inputs) # shallow copy | |
sample_dict = ProteinSolubilityTask.data_preprocessing( | |
sample_dict=sample_dict, | |
protein_sequence_key="protein_seq", | |
tokenizer_op=model_holder.tokenizer_op, | |
device=model_holder.model.device, | |
) | |
return sample_dict | |
def run_model(self, sample_dict, model: Mammal): | |
# Generate Prediction | |
batch_dict = model.generate( | |
[sample_dict], | |
output_scores=True, | |
return_dict_in_generate=True, | |
max_new_tokens=5, | |
) | |
return batch_dict | |
def decode_output(self, batch_dict, tokenizer_op: ModularTokenizerOp) -> list: | |
""" | |
Extract predicted class and scores | |
""" | |
ans_dict = ProteinSolubilityTask.process_model_output( | |
tokenizer_op=tokenizer_op, | |
decoder_output=batch_dict[CLS_PRED][0], | |
decoder_output_scores=batch_dict[SCORES][0], | |
) | |
ans = [ | |
tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0]), | |
ans_dict["pred"], | |
ans_dict["not_normalized_scores"].item(), | |
ans_dict["normalized_scores"].item(), | |
] | |
return ans | |
def create_and_run_prompt(self, model_name, protein_seq): | |
model_holder = self.model_dict[model_name] | |
inputs = { | |
"protein_seq": protein_seq, | |
} | |
sample_dict = self.crate_sample_dict( | |
sample_inputs=inputs, model_holder=model_holder | |
) | |
prompt = sample_dict[ENCODER_INPUTS_STR] | |
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model) | |
res = prompt, *self.decode_output( | |
batch_dict, tokenizer_op=model_holder.tokenizer_op | |
) | |
return res | |
def create_demo(self, model_name_widget): | |
with gr.Group() as demo: | |
gr.Markdown(self.markup_text) | |
with gr.Row(): | |
protein_textbox = gr.Textbox( | |
label="Protein sequance", | |
# info="standard", | |
interactive=True, | |
lines=3, | |
value=self.examples["protein_seq"], | |
) | |
with gr.Row(): | |
run_mammal = gr.Button( | |
"Run Mammal prompt for TCL-Epitope Interaction", | |
variant="primary", | |
) | |
with gr.Row(): | |
prompt_box = gr.Textbox(label="Mammal prompt", lines=5) | |
with gr.Row(): | |
decoded = gr.Textbox(label="Mammal output") | |
predicted_class = gr.Textbox(label="Mammal prediction") | |
with gr.Column(): | |
non_norm_score = gr.Number(label="Non normelized score") | |
norm_score = gr.Number(label="Normelized score") | |
run_mammal.click( | |
fn=self.create_and_run_prompt, | |
inputs=[model_name_widget, protein_textbox], | |
outputs=[ | |
prompt_box, | |
decoded, | |
predicted_class, | |
non_norm_score, | |
norm_score, | |
], | |
) | |
demo.visible = False | |
return demo | |