Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from fuse.data.tokenizers.modular_tokenizer.op import ModularTokenizerOp | |
from mammal.keys import ( | |
CLS_PRED, | |
ENCODER_INPUTS_ATTENTION_MASK, | |
ENCODER_INPUTS_STR, | |
ENCODER_INPUTS_TOKENS, | |
SCORES, | |
) | |
from mammal.model import Mammal | |
from mammal_demo.demo_framework import MammalObjectBroker, MammalTask | |
class TcrTask(MammalTask): | |
def __init__(self, model_dict): | |
super().__init__( | |
name="Mammal based TCRbeta-epitope binding affinity", model_dict=model_dict | |
) | |
self.description = "Mammal based TCRbeta-epitope binding affinity (TCR)" | |
self.examples = { | |
"tcr_beta_seq": "NAGVTQTPKFQVLKTGQSMTLQCAQDMNHEYMSWYRQDPGMGLRLIHYSVGAGITDQGEVPNGYNVSRSTTEDFPLRLLSAAPSQTSVYFCASSYSWDRVLEQYFGPGTRLTVT", | |
"epitope_seq": "LLQTGIHVRVSQPSL", | |
} | |
self.markup_text = """ | |
# Mammal based Mammal based TCRbeta-epitope binding affinity demonstration | |
Given a TCR beta chain and epitope amino acid sequences, estimate the binding affinity score. | |
""" | |
def create_prompt(self, tcr_beta_seq, epitope_seq): | |
prompt = ( | |
"<@TOKENIZER-TYPE=AA><BINDING_AFFINITY_CLASS><SENTINEL_ID_0>" | |
+ f"<@TOKENIZER-TYPE=AA><MOLECULAR_ENTITY><MOLECULAR_ENTITY_TCR_BETA_VDJ><SEQUENCE_NATURAL_START>{tcr_beta_seq}<SEQUENCE_NATURAL_END>" | |
+ f"<@TOKENIZER-TYPE=AA><MOLECULAR_ENTITY><MOLECULAR_ENTITY_EPITOPE><SEQUENCE_NATURAL_START>{epitope_seq}<SEQUENCE_NATURAL_END><EOS>" | |
) | |
return prompt | |
def crate_sample_dict(self, sample_inputs: dict, model_holder: MammalObjectBroker): | |
"""convert sample_inputs to sample_dict including creating a proper prompt | |
Args: | |
sample_inputs (dict): dictionary containing the inputs to the model | |
model_holder (MammalObjectBroker): model holder | |
Returns: | |
dict: sample_dict for feeding into model | |
""" | |
sample_dict = dict() | |
sample_dict[ENCODER_INPUTS_STR] = self.create_prompt(**sample_inputs) | |
tokenizer_op = model_holder.tokenizer_op | |
model = model_holder.model | |
tokenizer_op( | |
sample_dict=sample_dict, | |
key_in=ENCODER_INPUTS_STR, | |
key_out_tokens_ids=ENCODER_INPUTS_TOKENS, | |
key_out_attention_mask=ENCODER_INPUTS_ATTENTION_MASK, | |
) | |
sample_dict[ENCODER_INPUTS_TOKENS] = torch.tensor( | |
sample_dict[ENCODER_INPUTS_TOKENS], device=model.device | |
) | |
sample_dict[ENCODER_INPUTS_ATTENTION_MASK] = torch.tensor( | |
sample_dict[ENCODER_INPUTS_ATTENTION_MASK], device=model.device | |
) | |
return sample_dict | |
def run_model(self, sample_dict, model: Mammal): | |
# Generate Prediction | |
batch_dict = model.generate( | |
[sample_dict], | |
output_scores=True, | |
return_dict_in_generate=True, | |
max_new_tokens=5, | |
) | |
return batch_dict | |
def positive_token_id(tokenizer_op: ModularTokenizerOp): | |
"""token for positive binding | |
Args: | |
model (MammalTrainedModel): model holding tokenizer | |
Returns: | |
int: id of positive binding token | |
""" | |
return tokenizer_op.get_token_id("<1>") | |
def negative_token_id(tokenizer_op: ModularTokenizerOp): | |
"""token for negative binding | |
Args: | |
model (MammalTrainedModel): model holding tokenizer | |
Returns: | |
int: id of negative binding token | |
""" | |
return tokenizer_op.get_token_id("<0>") | |
def decode_output(self, batch_dict, tokenizer_op: ModularTokenizerOp) -> list: | |
""" | |
Extract predicted class and scores | |
""" | |
# positive_token_id = self.positive_token_id(tokenizer_op) | |
# negative_token_id = self.negative_token_id(tokenizer_op) | |
negative_token_id = tokenizer_op.get_token_id("<0>") | |
positive_token_id = tokenizer_op.get_token_id("<1>") | |
label_id_to_int = { | |
negative_token_id: 0, | |
positive_token_id: 1, | |
} | |
classification_position = 1 | |
decoder_output = batch_dict[CLS_PRED][0] | |
decoder_output_scores = batch_dict[SCORES][0] | |
if decoder_output_scores is not None: | |
scores = decoder_output_scores[classification_position, positive_token_id] | |
else: | |
scores = [None] | |
ans = [ | |
tokenizer_op._tokenizer.decode(batch_dict[CLS_PRED][0]), | |
label_id_to_int.get(int(decoder_output[classification_position]), -1), | |
scores.item(), | |
] | |
return ans | |
def create_and_run_prompt(self, model_name, tcr_beta_seq, epitope_seq): | |
model_holder = self.model_dict[model_name] | |
inputs = { | |
"tcr_beta_seq": tcr_beta_seq, | |
"epitope_seq": epitope_seq, | |
} | |
sample_dict = self.crate_sample_dict( | |
sample_inputs=inputs, model_holder=model_holder | |
) | |
prompt = sample_dict[ENCODER_INPUTS_STR] | |
batch_dict = self.run_model(sample_dict=sample_dict, model=model_holder.model) | |
res = prompt, *self.decode_output( | |
batch_dict, tokenizer_op=model_holder.tokenizer_op | |
) | |
return res | |
def create_demo(self, model_name_widget): | |
with gr.Group() as demo: | |
gr.Markdown(self.markup_text) | |
with gr.Row(): | |
tcr_textbox = gr.Textbox( | |
label="T-cell receptor beta sequence", | |
# info="standard", | |
interactive=True, | |
lines=3, | |
value=self.examples["tcr_beta_seq"], | |
) | |
epitope_textbox = gr.Textbox( | |
label="Epitope sequence", | |
# info="standard", | |
interactive=True, | |
lines=3, | |
value=self.examples["epitope_seq"], | |
) | |
with gr.Row(): | |
run_mammal = gr.Button( | |
"Run Mammal prompt for TCL-Epitope Interaction", | |
variant="primary", | |
) | |
with gr.Row(): | |
prompt_box = gr.Textbox(label="Mammal prompt", lines=5) | |
with gr.Row(): | |
decoded = gr.Textbox(label="Mammal output") | |
predicted_class = gr.Textbox(label="Mammal prediction") | |
binding_score = gr.Number(label="Binding score") | |
run_mammal.click( | |
fn=self.create_and_run_prompt, | |
inputs=[model_name_widget, tcr_textbox, epitope_textbox], | |
outputs=[prompt_box, decoded, predicted_class, binding_score], | |
) | |
demo.visible = False | |
return demo | |