matanninio commited on
Commit
ec656e5
·
1 Parent(s): e3cb71b

adde new tdi peer model

Browse files
Files changed (1) hide show
  1. app.py +10 -15
app.py CHANGED
@@ -11,10 +11,10 @@ from mammal_demo.tcr_task import TcrTask
11
 
12
  MAIN_MARKDOWN_TEXT = """
13
 
14
- The **[ibm/biomed.omics.bl.sm.ma-ted-458m](https://huggingface.co/models?sort=trending&search=ibm%2Fbiomed.omics.bl)** model family is a biomedical foundation model and its finetuned variants trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
15
- Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
16
 
17
- Based on the [**MAMMAL** - **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage](https://arxiv.org/abs/2410.22367v2), a flexible, multi-domain architecture with an adaptable task prompt syntax.
18
  The syntax allows for dynamic combinations of tokens and scalars, enabling classification, regression, and generation tasks either within a single domain or with cross-domain entities.
19
 
20
  This page demonstraits a variety of drug discovery and biomedical tasks for the model family. Select the task to access the specific demos.
@@ -39,6 +39,11 @@ all_models.register_model(
39
  model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
40
  task_list=[tdi_task],
41
  )
 
 
 
 
 
42
  all_models.register_model(
43
  model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
44
  task_list=[tcr_task],
@@ -84,8 +89,8 @@ def create_application():
84
  visible=value is not None,
85
  )
86
 
87
- with gr.Blocks(theme="Zarkel/IBM_Carbon_Theme") as application:
88
- application_main_markdown=gr.Markdown(MAIN_MARKDOWN_TEXT, visible=True)
89
  task_dropdown = gr.Dropdown(
90
  choices=["Select task"] + list(all_tasks.keys()),
91
  label="Mammal Task",
@@ -108,16 +113,6 @@ def create_application():
108
  visible=False,
109
  )
110
 
111
- def echo(value):
112
- print(value)
113
- return value
114
-
115
- # goto_card_button.click(
116
- # fn=None,
117
- # inputs=model_name_dropdown,
118
- # js=f"(model_name_dropdown) => {{ window.open('https://huggingface.co/{model_name_dropdown}', '_blank') }}",
119
- # )
120
-
121
  model_name_dropdown.change(
122
  model_change, inputs=[model_name_dropdown], outputs=[goto_card_button]
123
  )
 
11
 
12
  MAIN_MARKDOWN_TEXT = """
13
 
14
+ The **[ibm/biomed.omics.bl.sm.ma-ted-458m](https://huggingface.co/models?sort=trending&search=ibm%2Fbiomed.omics.bl)** model family is a biomedical foundation model and its finetuned variants trained on over 2 billion biological samples across multiple modalities, including proteins, small molecules, and single-cell gene data.
15
+ Designed for robust performance, it achieves state-of-the-art results over a variety of tasks across the entire drug discovery pipeline and the diverse biomedical domains.
16
 
17
+ Based on the [**MAMMAL** - **M**olecular **A**ligned **M**ulti-**M**odal **A**rchitecture and **L**anguage](https://arxiv.org/abs/2410.22367v2), a flexible, multi-domain architecture with an adaptable task prompt syntax.
18
  The syntax allows for dynamic combinations of tokens and scalars, enabling classification, regression, and generation tasks either within a single domain or with cross-domain entities.
19
 
20
  This page demonstraits a variety of drug discovery and biomedical tasks for the model family. Select the task to access the specific demos.
 
39
  model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd",
40
  task_list=[tdi_task],
41
  )
42
+ all_models.register_model(
43
+ model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd_peer",
44
+ task_list=[tdi_task],
45
+ )
46
+
47
  all_models.register_model(
48
  model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind",
49
  task_list=[tcr_task],
 
89
  visible=value is not None,
90
  )
91
 
92
+ with gr.Blocks(theme="../Zarkel/IBM_Carbon_Theme") as application:
93
+ gr.Markdown(MAIN_MARKDOWN_TEXT, visible=True)
94
  task_dropdown = gr.Dropdown(
95
  choices=["Select task"] + list(all_tasks.keys()),
96
  label="Mammal Task",
 
113
  visible=False,
114
  )
115
 
 
 
 
 
 
 
 
 
 
 
116
  model_name_dropdown.change(
117
  model_change, inputs=[model_name_dropdown], outputs=[goto_card_button]
118
  )