import gradio as gr from mammal_demo.demo_framework import ( ModelRegistry, TaskRegistry, ) from mammal_demo.dti_task import DtiTask from mammal_demo.ppi_task import PpiTask from mammal_demo.ps_task import PsTask from mammal_demo.tcr_task import TcrTask all_tasks = TaskRegistry() all_models = ModelRegistry() # first create the required tasks # Note that the tasks need access to the models, as the model to use depends on the state of the widget # we pass the all_models dict and update it when we actualy have the models. ppi_task = all_tasks.register_task(PpiTask(model_dict=all_models)) tdi_task = all_tasks.register_task(DtiTask(model_dict=all_models)) tcr_task = all_tasks.register_task(TcrTask(model_dict=all_models)) ps_task = all_tasks.register_task(PsTask(model_dict=all_models)) # create the model holders. hold the model and the tokenizer, lazy download # note that the list of relevent tasks needs to be stated. all_models.register_model( model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.dti_bindingdb_pkd", task_list=[tdi_task], ) all_models.register_model( model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.tcr_epitope_bind", task_list=[tcr_task], ) all_models.register_model( model_path="ibm/biomed.omics.bl.sm.ma-ted-458m.protein_solubility", task_list=[ps_task], ) all_models.register_model( model_path="ibm/biomed.omics.bl.sm.ma-ted-458m", task_list=[ppi_task, tcr_task], ) all_models.register_model("https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_tox") all_models.register_model("https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_clintox_fda") all_models.register_model("https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.moleculenet_bbbp") def create_application(): def task_change(value): visibility = [gr.update(visible=(task == value)) for task in all_tasks.keys()] choices = [ model_name for model_name, model in all_models.items() if value in model.tasks ] if choices: return ( gr.update(choices=choices, value=choices[0], visible=True), *visibility, ) else: return (gr.skip, *visibility) # return model_name_dropdown with gr.Blocks() as application: task_dropdown = gr.Dropdown( choices=["Select task"] + list(all_tasks.keys()), label="Mammal Task" ) task_dropdown.interactive = True model_name_dropdown = gr.Dropdown( choices=[ model_name for model_name, model in all_models.items() if task_dropdown.value in model.tasks ], interactive=True, label="Matching Mammal models", visible=False, ) task_dropdown.change( task_change, inputs=[task_dropdown], outputs=[model_name_dropdown] + [ all_tasks[task].demo(model_name_widgit=model_name_dropdown) for task in all_tasks ], ) # def set_demo_vis(main_text): # main_text=main_text # print(f"main text is {main_text}") # return gr.Group(visible=True) # #return gr.Group(visible=(main_text == "PPI")) # # , gr.Group( visible=(main_text == "DTI") ) # task_dropdown.change( # set_ppi_vis, inputs=task_dropdown, outputs=[ppi_demo] # ) return application full_demo = None def main(): global full_demo full_demo = create_application() full_demo.launch(show_error=True, share=False) # full_demo.launch(show_error=True, share=True) if __name__ == "__main__": main()