Spaces:
Running
Running
rahulnair23
commited on
Commit
β’
beff7ec
1
Parent(s):
d39c67a
updates + MMLU + XSUM
Browse files- app.py +126 -85
- assets/instructions.md +8 -5
- data/mmlu_subject_college_chemistry.pkl +3 -0
- data/mmlu_subject_computer_security.pkl +3 -0
- data/mmlu_subject_econometrics.pkl +3 -0
- data/mmlu_subject_us_foreign_policy.pkl +3 -0
- data/xsum.pkl +3 -0
app.py
CHANGED
@@ -8,7 +8,7 @@ from selfrank.algos.iterative import SelfRank
|
|
8 |
from selfrank.algos.baseline import MCARank
|
9 |
from selfrank.algos.triplet import equality, rouge
|
10 |
import matplotlib.pyplot as plt
|
11 |
-
|
12 |
|
13 |
class UI:
|
14 |
|
@@ -19,33 +19,55 @@ class UI:
|
|
19 |
def header_block(self):
|
20 |
"""Title/description"""
|
21 |
|
22 |
-
with open("assets/header.md",
|
23 |
content = f.read()
|
24 |
-
|
25 |
-
gr.Markdown(content)
|
26 |
-
gr.Markdown('---')
|
27 |
-
gr.Markdown('<br>')
|
28 |
|
|
|
|
|
|
|
29 |
|
30 |
def selection_panel(self):
|
31 |
"""user selections"""
|
32 |
gr.Markdown("""<h1 style='color: purple;'> Ranking with benchmarks </h1> """)
|
33 |
-
gr.Markdown(
|
34 |
-
|
|
|
|
|
35 |
self.data = gr.Dropdown(
|
36 |
choices=["CNN/DM", "XSUM", "MMLU"],
|
37 |
-
multiselect=False,
|
|
|
38 |
label="Choose a dataset.",
|
39 |
info="The dataset describes a specific task, either summarization (CNN/DM, XSUM) or multiple choice (MMLU).",
|
40 |
interactive=True,
|
41 |
)
|
|
|
42 |
self.evaluation = gr.Dropdown(
|
43 |
choices=["Rouge", "Equality"],
|
44 |
-
multiselect=False,
|
|
|
45 |
interactive=True,
|
46 |
label="Evaluation function",
|
47 |
info="How should the Judge model decide the winner? Demo limited to use 'Rouge' for generative tasks like summarization, and 'equality' for multiple choice or classification tasks. In practice you can use any function that compares judge responses to the contestant models.",
|
48 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
self.nmodels = gr.Dropdown(
|
50 |
choices=["All", 10, 20, 30],
|
51 |
label="Number of models",
|
@@ -64,46 +86,48 @@ class UI:
|
|
64 |
choices=["Greedy", "Full"],
|
65 |
label="Algorithm variant to use",
|
66 |
info="Choose from one of two variants. 'Full' (FTR in the paper) runs all triplet combinations, recommended when evaluations are cheap or for smaller datasets, or 'greedy' (GTR) a faster variant suggested for more complex evaluations.",
|
67 |
-
value=
|
68 |
interactive=True,
|
69 |
)
|
70 |
self.btn_execute = gr.Button("Run")
|
71 |
|
72 |
-
|
73 |
def output_panel(self):
|
74 |
"""Plots/leaderboard/bump charts"""
|
75 |
-
with gr.Column(variant=
|
76 |
gr.Markdown("""<h2 style='color: purple;'> Estimated ranking </h2> """)
|
77 |
-
self.leaderboard = gr.DataFrame(
|
|
|
78 |
|
79 |
-
with gr.Column(variant=
|
80 |
-
gr.Markdown(
|
81 |
-
|
|
|
|
|
82 |
self.bumpchart = gr.Image()
|
83 |
self.eval_metrics = gr.Markdown()
|
84 |
-
|
85 |
def synth_panel(self):
|
86 |
-
"""
|
87 |
-
gr.Markdown(
|
88 |
-
gr.Markdown(
|
89 |
gr.Markdown("""<h1 style='color: purple;'>Synthetic multiple choice </h1> """)
|
90 |
gr.Markdown("Coming soon.")
|
91 |
|
92 |
def byod_panel(self):
|
93 |
-
"""
|
94 |
-
gr.Markdown(
|
95 |
-
gr.Markdown(
|
96 |
-
with open("assets/instructions.md",
|
97 |
content = f.read()
|
98 |
gr.Markdown(content)
|
99 |
-
gr.Markdown(
|
100 |
-
|
101 |
def load_css(self):
|
102 |
-
with open(
|
103 |
self.css = file.read()
|
104 |
-
|
105 |
def layout(self):
|
106 |
-
"""
|
107 |
|
108 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
109 |
self.header_block()
|
@@ -117,67 +141,81 @@ class UI:
|
|
117 |
# Output panel/leaderboard
|
118 |
self.output_panel()
|
119 |
|
120 |
-
#TODO: self.synth_panel()
|
121 |
self.byod_panel()
|
122 |
-
|
123 |
# Register event listeners
|
124 |
self.btn_execute.click(
|
125 |
-
fn=self.benchmark_executor,
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
)
|
128 |
|
129 |
-
return demo
|
130 |
-
|
131 |
-
def benchmark_executor(
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
135 |
seed = 40
|
136 |
np.random.seed(seed)
|
137 |
-
|
138 |
match data:
|
139 |
-
case
|
140 |
-
adf = pd.read_pickle(f"data/
|
141 |
-
|
142 |
-
|
143 |
-
case 'CNN/DM':
|
144 |
adf = pd.read_pickle(f"data/cnndm.pkl")
|
145 |
-
MODELS = adf.model.unique()
|
146 |
|
147 |
-
case
|
148 |
-
|
149 |
-
|
150 |
case _:
|
151 |
raise ValueError(f"'{data}' not understood.")
|
152 |
|
|
|
|
|
153 |
# Sample fewer models if so needed
|
154 |
if nmodels != "All":
|
155 |
if nmodels < len(MODELS):
|
156 |
-
|
157 |
MODELS = np.random.choice(MODELS, nmodels, replace=False).tolist()
|
158 |
adf = adf[adf.model.isin(MODELS)]
|
159 |
|
160 |
match data:
|
161 |
-
case
|
162 |
-
keys = [
|
163 |
-
|
|
|
|
|
|
|
|
|
164 |
keys = ["id", "trial_id"]
|
165 |
case _:
|
166 |
pass
|
167 |
|
168 |
df = adf.pivot_table(
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
|
175 |
# Filter by number of rows
|
176 |
df.dropna(inplace=True)
|
177 |
if nrows != "All":
|
178 |
if nrows < df.shape[0]:
|
179 |
df = df.sample(nrows, random_state=seed)
|
180 |
-
|
181 |
# Compute true ranking
|
182 |
adf = adf.set_index(keys).loc[df.index].reset_index()
|
183 |
|
@@ -190,7 +228,7 @@ class UI:
|
|
190 |
adf["rouge"] = Parallel(n_jobs=-1, batch_size=128)(
|
191 |
delayed(__true_rouge)(i, scorer) for _, i in adf.iterrows()
|
192 |
)
|
193 |
-
|
194 |
# Method 2 - look at "win rates" - for each question, see which model
|
195 |
# wins (i.e. has the best ROUGE score)
|
196 |
idx = adf.groupby(["id", "trial_id"])["rouge"].idxmax()
|
@@ -201,8 +239,8 @@ class UI:
|
|
201 |
no_wins = list(set(MODELS) - set(win_rate_rank))
|
202 |
true_ranking = win_rate_rank + no_wins
|
203 |
evaluator = rouge
|
204 |
-
|
205 |
-
elif evaluation ==
|
206 |
|
207 |
# Compute the true ranking (multiple choice - so use equality between
|
208 |
# LLM response and reference-value)
|
@@ -217,52 +255,55 @@ class UI:
|
|
217 |
|
218 |
else:
|
219 |
raise ValueError(f"'{evaluation}' not understood.")
|
220 |
-
|
221 |
match method:
|
222 |
-
case
|
223 |
ranker = SelfRank(MODELS, evaluator, true_ranking)
|
224 |
-
|
225 |
-
case
|
226 |
ranker = SelfRankGreedy(MODELS, evaluator, true_ranking)
|
227 |
-
|
228 |
-
case
|
229 |
raise NotImplementedError
|
230 |
case _:
|
231 |
raise ValueError(f"'{method}' not understood.")
|
232 |
-
|
233 |
-
|
234 |
# generate outputs
|
235 |
ranker.fit(df)
|
236 |
ranks = ranker.ranking
|
237 |
-
|
238 |
-
ranks = [
|
239 |
-
|
|
|
|
|
240 |
|
241 |
-
out_metrics = {
|
|
|
242 |
"map-1": ranker.measure(metric="mapk", k=1),
|
243 |
"map-3": ranker.measure(metric="mapk", k=3),
|
244 |
"map-5": ranker.measure(metric="mapk", k=5),
|
245 |
"map-10": ranker.measure(metric="mapk", k=10),
|
246 |
-
"evaluations": evaluator.calls
|
247 |
}
|
248 |
-
eval_metrics = (
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
253 |
|
254 |
out_plot = ranker.plot()
|
255 |
-
|
256 |
-
return out_df, "output.png", eval_metrics
|
257 |
|
|
|
258 |
|
259 |
def run(self):
|
260 |
self.ui = self.layout()
|
261 |
self.ui.queue().launch(show_error=True)
|
262 |
|
263 |
|
264 |
-
#if __name__ == "__main__":
|
265 |
ui = UI()
|
266 |
-
#ui.run()
|
267 |
demo = ui.layout()
|
268 |
demo.launch()
|
|
|
8 |
from selfrank.algos.baseline import MCARank
|
9 |
from selfrank.algos.triplet import equality, rouge
|
10 |
import matplotlib.pyplot as plt
|
11 |
+
from itertools import zip_longest
|
12 |
|
13 |
class UI:
|
14 |
|
|
|
19 |
def header_block(self):
|
20 |
"""Title/description"""
|
21 |
|
22 |
+
with open("assets/header.md", "r") as f:
|
23 |
content = f.read()
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
gr.Markdown(content)
|
26 |
+
gr.Markdown("---")
|
27 |
+
gr.Markdown("<br>")
|
28 |
|
29 |
def selection_panel(self):
|
30 |
"""user selections"""
|
31 |
gr.Markdown("""<h1 style='color: purple;'> Ranking with benchmarks </h1> """)
|
32 |
+
gr.Markdown(
|
33 |
+
"""Using inference data gathered from [HELM](https://crfm.stanford.edu/helm/classic/latest/) we first show how our estimated rankings compare to rankings derived from using ground-truth or reference data."""
|
34 |
+
)
|
35 |
+
with gr.Column(variant="compact"):
|
36 |
self.data = gr.Dropdown(
|
37 |
choices=["CNN/DM", "XSUM", "MMLU"],
|
38 |
+
multiselect=False,
|
39 |
+
value="CNN/DM",
|
40 |
label="Choose a dataset.",
|
41 |
info="The dataset describes a specific task, either summarization (CNN/DM, XSUM) or multiple choice (MMLU).",
|
42 |
interactive=True,
|
43 |
)
|
44 |
+
self.mmlu = gr.Dropdown(visible=False)
|
45 |
self.evaluation = gr.Dropdown(
|
46 |
choices=["Rouge", "Equality"],
|
47 |
+
multiselect=False,
|
48 |
+
value="Rouge",
|
49 |
interactive=True,
|
50 |
label="Evaluation function",
|
51 |
info="How should the Judge model decide the winner? Demo limited to use 'Rouge' for generative tasks like summarization, and 'equality' for multiple choice or classification tasks. In practice you can use any function that compares judge responses to the contestant models.",
|
52 |
)
|
53 |
+
|
54 |
+
def update_mmlu(v):
|
55 |
+
if v == "MMLU":
|
56 |
+
return gr.Dropdown(
|
57 |
+
choices=list(['abstract_algebra', 'college_chemistry', 'computer_security', 'econometrics', 'us_foreign_policy']),
|
58 |
+
value='us_foreign_policy',
|
59 |
+
multiselect=False,
|
60 |
+
label="Choose MMLU subject.",
|
61 |
+
info="MMLU subject area.",
|
62 |
+
interactive=True,
|
63 |
+
visible=True,
|
64 |
+
), gr.Dropdown(choices=['Equality'], value='Equality')
|
65 |
+
else:
|
66 |
+
return gr.Dropdown(visible=False), gr.Dropdown(choices=['Rouge'], value='Rouge')
|
67 |
+
|
68 |
+
self.data.change(fn=update_mmlu, inputs=self.data, outputs=[self.mmlu, self.evaluation])
|
69 |
+
|
70 |
+
|
71 |
self.nmodels = gr.Dropdown(
|
72 |
choices=["All", 10, 20, 30],
|
73 |
label="Number of models",
|
|
|
86 |
choices=["Greedy", "Full"],
|
87 |
label="Algorithm variant to use",
|
88 |
info="Choose from one of two variants. 'Full' (FTR in the paper) runs all triplet combinations, recommended when evaluations are cheap or for smaller datasets, or 'greedy' (GTR) a faster variant suggested for more complex evaluations.",
|
89 |
+
value="Full",
|
90 |
interactive=True,
|
91 |
)
|
92 |
self.btn_execute = gr.Button("Run")
|
93 |
|
|
|
94 |
def output_panel(self):
|
95 |
"""Plots/leaderboard/bump charts"""
|
96 |
+
with gr.Column(variant="default"):
|
97 |
gr.Markdown("""<h2 style='color: purple;'> Estimated ranking </h2> """)
|
98 |
+
self.leaderboard = gr.DataFrame(headers=["rank", "model"],
|
99 |
+
datatype=["number", "str"])
|
100 |
|
101 |
+
with gr.Column(variant="default"):
|
102 |
+
gr.Markdown(
|
103 |
+
"""<h2 style='color: purple;'> Comparison to 'true' ranking </h2> """
|
104 |
+
)
|
105 |
+
# self.bumpchart = gr.Plot(format='png')
|
106 |
self.bumpchart = gr.Image()
|
107 |
self.eval_metrics = gr.Markdown()
|
108 |
+
|
109 |
def synth_panel(self):
|
110 |
+
"""Synthetic data experiments"""
|
111 |
+
gr.Markdown("<br>")
|
112 |
+
gr.Markdown("---")
|
113 |
gr.Markdown("""<h1 style='color: purple;'>Synthetic multiple choice </h1> """)
|
114 |
gr.Markdown("Coming soon.")
|
115 |
|
116 |
def byod_panel(self):
|
117 |
+
"""Instructions panel"""
|
118 |
+
gr.Markdown("<br>")
|
119 |
+
gr.Markdown("---")
|
120 |
+
with open("assets/instructions.md", "r") as f:
|
121 |
content = f.read()
|
122 |
gr.Markdown(content)
|
123 |
+
gr.Markdown("---")
|
124 |
+
|
125 |
def load_css(self):
|
126 |
+
with open("style.css", "r") as file:
|
127 |
self.css = file.read()
|
128 |
+
|
129 |
def layout(self):
|
130 |
+
"""Assemble the overall layout"""
|
131 |
|
132 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
133 |
self.header_block()
|
|
|
141 |
# Output panel/leaderboard
|
142 |
self.output_panel()
|
143 |
|
144 |
+
# TODO: self.synth_panel()
|
145 |
self.byod_panel()
|
146 |
+
|
147 |
# Register event listeners
|
148 |
self.btn_execute.click(
|
149 |
+
fn=self.benchmark_executor,
|
150 |
+
inputs=[
|
151 |
+
self.data,
|
152 |
+
self.mmlu,
|
153 |
+
self.evaluation,
|
154 |
+
self.nmodels,
|
155 |
+
self.nrows,
|
156 |
+
self.method,
|
157 |
+
],
|
158 |
+
outputs=[self.leaderboard, self.bumpchart, self.eval_metrics],
|
159 |
)
|
160 |
|
161 |
+
return demo
|
162 |
+
|
163 |
+
def benchmark_executor(
|
164 |
+
self, data, mmlu_subject, evaluation, nmodels, nrows, method
|
165 |
+
) -> tuple[pd.DataFrame, plt.figure]:
|
166 |
+
"""Main execution flow for benchmarks"""
|
167 |
+
|
168 |
+
# gr.Info(f"Loaded run config: {data}, {evaluation}, {nmodels}.")
|
169 |
seed = 40
|
170 |
np.random.seed(seed)
|
171 |
+
|
172 |
match data:
|
173 |
+
case "MMLU":
|
174 |
+
adf = pd.read_pickle(f"data/mmlu_subject_{mmlu_subject}.pkl")
|
175 |
+
|
176 |
+
case "CNN/DM":
|
|
|
177 |
adf = pd.read_pickle(f"data/cnndm.pkl")
|
|
|
178 |
|
179 |
+
case "XSUM":
|
180 |
+
adf = pd.read_pickle(f"data/xsum.pkl")
|
181 |
+
|
182 |
case _:
|
183 |
raise ValueError(f"'{data}' not understood.")
|
184 |
|
185 |
+
MODELS = adf.model.unique()
|
186 |
+
|
187 |
# Sample fewer models if so needed
|
188 |
if nmodels != "All":
|
189 |
if nmodels < len(MODELS):
|
190 |
+
|
191 |
MODELS = np.random.choice(MODELS, nmodels, replace=False).tolist()
|
192 |
adf = adf[adf.model.isin(MODELS)]
|
193 |
|
194 |
match data:
|
195 |
+
case "MMLU":
|
196 |
+
keys = [
|
197 |
+
"id",
|
198 |
+
"trial_id",
|
199 |
+
"perturbation",
|
200 |
+
] # MMLU has this extra parameter
|
201 |
+
case "CNN/DM" | "XSUM":
|
202 |
keys = ["id", "trial_id"]
|
203 |
case _:
|
204 |
pass
|
205 |
|
206 |
df = adf.pivot_table(
|
207 |
+
columns="model",
|
208 |
+
index=keys,
|
209 |
+
values="output",
|
210 |
+
aggfunc="first",
|
211 |
+
)
|
212 |
|
213 |
# Filter by number of rows
|
214 |
df.dropna(inplace=True)
|
215 |
if nrows != "All":
|
216 |
if nrows < df.shape[0]:
|
217 |
df = df.sample(nrows, random_state=seed)
|
218 |
+
|
219 |
# Compute true ranking
|
220 |
adf = adf.set_index(keys).loc[df.index].reset_index()
|
221 |
|
|
|
228 |
adf["rouge"] = Parallel(n_jobs=-1, batch_size=128)(
|
229 |
delayed(__true_rouge)(i, scorer) for _, i in adf.iterrows()
|
230 |
)
|
231 |
+
|
232 |
# Method 2 - look at "win rates" - for each question, see which model
|
233 |
# wins (i.e. has the best ROUGE score)
|
234 |
idx = adf.groupby(["id", "trial_id"])["rouge"].idxmax()
|
|
|
239 |
no_wins = list(set(MODELS) - set(win_rate_rank))
|
240 |
true_ranking = win_rate_rank + no_wins
|
241 |
evaluator = rouge
|
242 |
+
|
243 |
+
elif evaluation == "Equality":
|
244 |
|
245 |
# Compute the true ranking (multiple choice - so use equality between
|
246 |
# LLM response and reference-value)
|
|
|
255 |
|
256 |
else:
|
257 |
raise ValueError(f"'{evaluation}' not understood.")
|
258 |
+
|
259 |
match method:
|
260 |
+
case "Full":
|
261 |
ranker = SelfRank(MODELS, evaluator, true_ranking)
|
262 |
+
|
263 |
+
case "Greedy":
|
264 |
ranker = SelfRankGreedy(MODELS, evaluator, true_ranking)
|
265 |
+
|
266 |
+
case "MCA":
|
267 |
raise NotImplementedError
|
268 |
case _:
|
269 |
raise ValueError(f"'{method}' not understood.")
|
270 |
+
|
|
|
271 |
# generate outputs
|
272 |
ranker.fit(df)
|
273 |
ranks = ranker.ranking
|
274 |
+
|
275 |
+
ranks = [
|
276 |
+
j + i for i, j in zip_longest(ranks, ["π₯ ", "π₯ ", "π₯ "], fillvalue="")
|
277 |
+
]
|
278 |
+
out_df = pd.DataFrame({"rank": range(1, len(true_ranking) + 1), "model": ranks})
|
279 |
|
280 |
+
out_metrics = {
|
281 |
+
"rbo": ranker.measure(metric="rbo"),
|
282 |
"map-1": ranker.measure(metric="mapk", k=1),
|
283 |
"map-3": ranker.measure(metric="mapk", k=3),
|
284 |
"map-5": ranker.measure(metric="mapk", k=5),
|
285 |
"map-10": ranker.measure(metric="mapk", k=10),
|
286 |
+
"evaluations": evaluator.calls,
|
287 |
}
|
288 |
+
eval_metrics = (
|
289 |
+
f"<h2> Evaluation measures </h2>"
|
290 |
+
f"Rank-Biased Overlap: {out_metrics['rbo']:0.3f}<br>"
|
291 |
+
f"MAP-3 : {out_metrics['map-3']:0.3f}<br>"
|
292 |
+
f"MAP-5 : {out_metrics['map-5']:0.3f}<br>"
|
293 |
+
f"MAP-10 : {out_metrics['map-10']: 0.3f}."
|
294 |
+
)
|
295 |
|
296 |
out_plot = ranker.plot()
|
|
|
|
|
297 |
|
298 |
+
return out_df, "output.png", eval_metrics
|
299 |
|
300 |
def run(self):
|
301 |
self.ui = self.layout()
|
302 |
self.ui.queue().launch(show_error=True)
|
303 |
|
304 |
|
305 |
+
# if __name__ == "__main__":
|
306 |
ui = UI()
|
307 |
+
# ui.run()
|
308 |
demo = ui.layout()
|
309 |
demo.launch()
|
assets/instructions.md
CHANGED
@@ -6,19 +6,22 @@ Source code is available as a pip installable python package.
|
|
6 |
|
7 |
Use of a virtual enviroment is recommended.
|
8 |
```bash
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
```
|
11 |
|
12 |
-
|
13 |
```bash
|
14 |
-
|
15 |
-
$ pip install git+https://huggingface.co/spaces/ibm/llm-rank-themselves.git
|
16 |
```
|
17 |
|
18 |
## Usage
|
19 |
|
20 |
Start by gathering model inferences for the same question/prompt across all models you want to rank. The ranking method expects a pandas dataframe, with a row for each prompt, and a column for each model, i.e.
|
21 |
-
|
|
22 |
|:-----------|:-----|:-----|:-----|:------|
|
23 |
| Q1 | a | a | b | ... |
|
24 |
| Q2 | a | b | b | ... |
|
|
|
6 |
|
7 |
Use of a virtual enviroment is recommended.
|
8 |
```bash
|
9 |
+
conda create -n selfrank python=3.10
|
10 |
+
```
|
11 |
+
Activate the virtual environment
|
12 |
+
```bash
|
13 |
+
conda activate selfrank
|
14 |
```
|
15 |
|
16 |
+
and then install,
|
17 |
```bash
|
18 |
+
pip install git+https://huggingface.co/spaces/ibm/llm-rank-themselves.git
|
|
|
19 |
```
|
20 |
|
21 |
## Usage
|
22 |
|
23 |
Start by gathering model inferences for the same question/prompt across all models you want to rank. The ranking method expects a pandas dataframe, with a row for each prompt, and a column for each model, i.e.
|
24 |
+
| | M1 | M2 | M3 | ... |
|
25 |
|:-----------|:-----|:-----|:-----|:------|
|
26 |
| Q1 | a | a | b | ... |
|
27 |
| Q2 | a | b | b | ... |
|
data/mmlu_subject_college_chemistry.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9181b1c32b176ab903f51282a79507702ffb3f3b356d85e5bb9fad2b6c052bd6
|
3 |
+
size 8778542
|
data/mmlu_subject_computer_security.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7141d827015681bf279d1f833bf420698c7aff0e75c95081c2e95d334900e367
|
3 |
+
size 10070152
|
data/mmlu_subject_econometrics.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a0f86c63ecc1a415b30e8513018d0d2900ce7b1b265d24024501b7a0309d7d8
|
3 |
+
size 14779002
|
data/mmlu_subject_us_foreign_policy.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09e125afd27b5a177697ae87145bac5e485fae43e6f8ef8a0405f1dc2ee63bee
|
3 |
+
size 7014950
|
data/xsum.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97af7f7179036f50c2aa10ce0d40a017b0bc467518057951fba6ef69e8d2a733
|
3 |
+
size 11067330
|