import numpy as np def systematic_sampling(l: list, n: int) -> list: """ l - (ordered) list to be sampled from n - number of samples to fetch returns a list of samples (far apart) """ skip = len(l)/n s = np.random.uniform(0, skip) out = [] for _ in range(n): out.append(l[np.floor(s).astype(int)]) s += skip return out def close_sampling(l:list, n: int) -> list: """ returns a sampled list (close together) """ w = np.floor(n/2 + 2).astype(int) s = np.floor(np.random.uniform(w, len(l) - w)).astype(int) subset = [l[i] for i in range(s-w, s+w)] return np.random.choice(subset, n, replace=False).tolist()