Spaces:
Sleeping
Sleeping
# adding the batch loading part for training | |
import os | |
import math | |
import time | |
import inspect | |
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
# key, query, value projections for all heads, but in a batch | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
# output projection | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
# regularization | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) | |
def forward(self, x): | |
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs | |
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer | |
qkv = self.c_attn(x) | |
q, k, v = qkv.split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) | |
att = F.softmax(att, dim=-1) | |
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
# output projection | |
y = self.c_proj(y) | |
return y | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
self.gelu = nn.GELU(approximate='tanh') | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
self.c_proj.NANOGPT_SCALE_INIT = 1 | |
def forward(self, x): | |
x = self.c_fc(x) | |
x = self.gelu(x) | |
x = self.c_proj(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = nn.LayerNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = nn.LayerNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPTConfig: | |
block_size: int = 1024 # max sequence length | |
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token | |
n_layer: int = 12 # number of layers | |
n_head: int = 12 # number of heads | |
n_embd: int = 768 # embedding dimension | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size, config.n_embd), | |
wpe = nn.Embedding(config.block_size, config.n_embd), | |
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f = nn.LayerNorm(config.n_embd), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
def forward(self, idx, targets=None): | |
# idx is of shape (B, T) | |
B, T = idx.size() | |
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" | |
# forward the token and posisition embeddings | |
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T) | |
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd) | |
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd) | |
x = tok_emb + pos_emb | |
# forward the blocks of the transformer | |
for block in self.transformer.h: | |
x = block(x) | |
# forward the final layernorm and the classifier | |
x = self.transformer.ln_f(x) | |
logits = self.lm_head(x) # (B, T, vocab_size) | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss | |
def from_pretrained(cls, model_type): | |
"""Loads pretrained GPT-2 model weights from huggingface""" | |
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} | |
from transformers import GPT2LMHeadModel | |
print("loading weights from pretrained gpt: %s" % model_type) | |
# n_layer, n_head and n_embd are determined from model_type | |
config_args = { | |
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params | |
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params | |
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params | |
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params | |
}[model_type] | |
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints | |
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints | |
# create a from-scratch initialized minGPT model | |
config = GPTConfig(**config_args) | |
model = GPT(config) | |
sd = model.state_dict() | |
sd_keys = sd.keys() | |
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param | |
# init a huggingface/transformers model | |
model_hf = GPT2LMHeadModel.from_pretrained(model_type) | |
sd_hf = model_hf.state_dict() | |
# copy while ensuring all of the parameters are aligned and match in names and shapes | |
sd_keys_hf = sd_hf.keys() | |
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer | |
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) | |
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] | |
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear | |
# this means that we have to transpose these weights when we import them | |
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" | |
for k in sd_keys_hf: | |
if any(k.endswith(w) for w in transposed): | |
# special treatment for the Conv1D weights we need to transpose | |
assert sd_hf[k].shape[::-1] == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k].t()) | |
else: | |
# vanilla copy over the other parameters | |
assert sd_hf[k].shape == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k]) | |
return model | |
# model = GPT.from_pretrained('gpt2') | |
device = 'cpu' | |
if torch.cuda.is_available(): | |
device = 'cuda' | |
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): | |
device = "mps" | |
print(f"using device: {device}") | |
print("didn't crash yet!") | |
# STOP | |
num_return_sequences = 5 | |
max_length = 30 | |
import tiktoken | |
enc = tiktoken.get_encoding('gpt2') | |
with open('input.txt', 'r') as f: | |
text = f.read() | |
text = text[:1000] | |
tokens = enc.encode(text) | |
B, T = 4, 32 | |
buf = torch.tensor(tokens[:B*T + 1]) | |
buf = buf.to(device) | |
x = buf[:-1].view(B, T) | |
y = buf[1:].view(B, T) | |
model = GPT(GPTConfig()) | |
model.to(device) | |
logits, loss = model(x, y) | |
print(loss) | |
import sys; sys.exit(0) | |
torch.manual_seed(42) | |
torch.cuda.manual_seed(42) | |
while x.size(1) < max_length: | |
# forward the model to get the logits | |
with torch.no_grad(): | |
logits = model(x)[0] # (B, T, vocab_size) | |
# take the logits at the last position | |
logits = logits[:, -1, :] # (B, vocab_size) | |
# get the probabilities | |
probs = F.softmax(logits, dim=-1) | |
# do top-k sampling of 50 (huggingface pipeline default) | |
# topk_probs here becomes (5, 50), topk_indices is (5, 50) | |
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1) | |
# select a token from the top-k probabilities | |
# note: multinomial does not demand the input to sum to 1 | |
ix = torch.multinomial(topk_probs, 1) # (B, 1) | |
# gather the corresponding indices | |
xcol = torch.gather(topk_indices, -1, ix) # (B, 1) | |
# append to the sequence | |
x = torch.cat((x, xcol), dim=1) | |
# print the generated text | |
for i in range(num_return_sequences): | |
tokens = x[i, :max_length].tolist() | |
decoded = enc.decode(tokens) | |
print(">", decoded) |