Upload 2 files
Browse files- app.py +78 -0
- out-shakespeare-char/ckpt.pt +3 -0
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
from contextlib import nullcontext
|
4 |
+
import torch
|
5 |
+
import tiktoken
|
6 |
+
from model import GPTConfig, GPT
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
def sample_from_trained_model(start="\n", init_from='resume', out_dir='out-shakespeare-char', num_samples=1,
|
10 |
+
max_new_tokens=500, temperature=0.8, top_k=200, seed=1337, device='cpu', compile=False):
|
11 |
+
# Set the dtype
|
12 |
+
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
|
13 |
+
|
14 |
+
# Setup seed and device
|
15 |
+
torch.manual_seed(seed)
|
16 |
+
torch.cuda.manual_seed(seed)
|
17 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
18 |
+
torch.backends.cudnn.allow_tf32 = True
|
19 |
+
device_type = 'cuda' if 'cuda' in device else 'cpu'
|
20 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
21 |
+
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
22 |
+
|
23 |
+
# Load model
|
24 |
+
if init_from == 'resume':
|
25 |
+
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
26 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
27 |
+
gptconf = GPTConfig(**checkpoint['model_args'])
|
28 |
+
model = GPT(gptconf)
|
29 |
+
state_dict = checkpoint['model']
|
30 |
+
unwanted_prefix = '_orig_mod.'
|
31 |
+
for k, v in list(state_dict.items()):
|
32 |
+
if k.startswith(unwanted_prefix):
|
33 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
34 |
+
model.load_state_dict(state_dict)
|
35 |
+
elif init_from.startswith('gpt2'):
|
36 |
+
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
|
37 |
+
|
38 |
+
model.eval()
|
39 |
+
model.to(device)
|
40 |
+
if compile:
|
41 |
+
model = torch.compile(model)
|
42 |
+
|
43 |
+
# Load meta data if available
|
44 |
+
load_meta = False
|
45 |
+
if init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']:
|
46 |
+
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
|
47 |
+
load_meta = os.path.exists(meta_path)
|
48 |
+
if load_meta:
|
49 |
+
print(f"Loading meta from {meta_path}...")
|
50 |
+
with open(meta_path, 'rb') as f:
|
51 |
+
meta = pickle.load(f)
|
52 |
+
stoi, itos = meta['stoi'], meta['itos']
|
53 |
+
encode = lambda s: [stoi[c] for c in s]
|
54 |
+
decode = lambda l: ''.join([itos[i] for i in l])
|
55 |
+
else:
|
56 |
+
print("No meta.pkl found, assuming GPT-2 encodings...")
|
57 |
+
enc = tiktoken.get_encoding("gpt2")
|
58 |
+
encode = lambda s: enc.encode(s, allowed_special={""})
|
59 |
+
decode = lambda l: enc.decode(l)
|
60 |
+
|
61 |
+
# Encode the beginning of the prompt
|
62 |
+
if start.startswith('FILE:'):
|
63 |
+
with open(start[5:], 'r', encoding='utf-8') as f:
|
64 |
+
start = f.read()
|
65 |
+
start_ids = encode(start)
|
66 |
+
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
|
67 |
+
|
68 |
+
# Run generation
|
69 |
+
with torch.no_grad():
|
70 |
+
with ctx:
|
71 |
+
for k in range(num_samples):
|
72 |
+
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
|
73 |
+
return decode(y[0].tolist())
|
74 |
+
|
75 |
+
iface = gr.Interface(fn=sample_from_trained_model, inputs="text", outputs="textbox",
|
76 |
+
title="GPT Text Generator", description="Enter a prompt to generate text.")
|
77 |
+
|
78 |
+
iface.launch(share=True)
|
out-shakespeare-char/ckpt.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b46b1b2a1b037525c9c87dbc6b7f728851c729ecb4e43f81f3f56552147ada52
|
3 |
+
size 128986474
|