File size: 7,497 Bytes
71c714a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/usr/bin/env python3
"""
Utility Script containing functions to be used for training
Author: Shilpaj Bhalerao
"""
# Standard Library Imports
import math
from typing import NoReturn
import io
from PIL import Image
# Third-Party Imports
import numpy as np
import matplotlib.pyplot as plt
import torch
from torchsummary import summary
from torchvision import transforms
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image


def get_summary(model, input_size: tuple) -> NoReturn:
    """
    Function to get the summary of the model architecture
    :param model: Object of model architecture class
    :param input_size: Input data shape (Channels, Height, Width)
    """
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    network = model.to(device)
    summary(network, input_size=input_size)


def get_misclassified_data(model, device, test_loader):
    """
    Function to run the model on test set and return misclassified images
    :param model: Network Architecture
    :param device: CPU/GPU
    :param test_loader: DataLoader for test set
    """
    # Prepare the model for evaluation i.e. drop the dropout layer
    model.eval()

    # List to store misclassified Images
    misclassified_data = []

    # Reset the gradients
    with torch.no_grad():
        # Extract images, labels in a batch
        for data, target in test_loader:

            # Migrate the data to the device
            data, target = data.to(device), target.to(device)

            # Extract single image, label from the batch
            for image, label in zip(data, target):

                # Add batch dimension to the image
                image = image.unsqueeze(0)

                # Get the model prediction on the image
                output = model(image)

                # Convert the output from one-hot encoding to a value
                pred = output.argmax(dim=1, keepdim=True)

                # If prediction is incorrect, append the data
                if pred != label:
                    misclassified_data.append((image, label, pred))
    return misclassified_data


# -------------------- DATA STATISTICS --------------------
def get_mnist_statistics(data_set, data_set_type='Train'):
    """
    Function to return the statistics of the training data
    :param data_set: Training dataset
    :param data_set_type: Type of dataset [Train/Test/Val]
    """
    # We'd need to convert it into Numpy! Remember above we have converted it into tensors already
    train_data = data_set.train_data
    train_data = data_set.transform(train_data.numpy())

    print(f'[{data_set_type}]')
    print(' - Numpy Shape:', data_set.train_data.cpu().numpy().shape)
    print(' - Tensor Shape:', data_set.train_data.size())
    print(' - min:', torch.min(train_data))
    print(' - max:', torch.max(train_data))
    print(' - mean:', torch.mean(train_data))
    print(' - std:', torch.std(train_data))
    print(' - var:', torch.var(train_data))

    dataiter = next(iter(data_set))
    images, labels = dataiter[0], dataiter[1]

    print(images.shape)
    print(labels)

    # Let's visualize some of the images
    plt.imshow(images[0].numpy().squeeze(), cmap='gray')


def get_cifar_property(images, operation):
    """
    Get the property on each channel of the CIFAR
    :param images: Get the property value on the images
    :param operation: Mean, std, Variance, etc
    """
    param_r = eval('images[:, 0, :, :].' + operation + '()')
    param_g = eval('images[:, 1, :, :].' + operation + '()')
    param_b = eval('images[:, 2, :, :].' + operation + '()')
    return param_r, param_g, param_b


def get_cifar_statistics(data_set, data_set_type='Train'):
    """
    Function to get the statistical information of the CIFAR dataset
    :param data_set: Training set of CIFAR
    :param data_set_type: Training or Test data
    """
    # Images in the dataset
    images = [item[0] for item in data_set]
    images = torch.stack(images, dim=0).numpy()

    # Calculate mean over each channel
    mean_r, mean_g, mean_b = get_cifar_property(images, 'mean')

    # Calculate Standard deviation over each channel
    std_r, std_g, std_b = get_cifar_property(images, 'std')

    # Calculate min value over each channel
    min_r, min_g, min_b = get_cifar_property(images, 'min')

    # Calculate max value over each channel
    max_r, max_g, max_b = get_cifar_property(images, 'max')

    # Calculate variance value over each channel
    var_r, var_g, var_b = get_cifar_property(images, 'var')

    print(f'[{data_set_type}]')
    print(f' - Total {data_set_type} Images: {len(data_set)}')
    print(f' - Tensor Shape: {images[0].shape}')
    print(f' - min: {min_r, min_g, min_b}')
    print(f' - max: {max_r, max_g, max_b}')
    print(f' - mean: {mean_r, mean_g, mean_b}')
    print(f' - std: {std_r, std_g, std_b}')
    print(f' - var: {var_r, var_g, var_b}')

    # Let's visualize some of the images
    plt.imshow(np.transpose(images[1].squeeze(), (1, 2, 0)))


# -------------------- GradCam --------------------
def display_gradcam_output(data: list,
                           classes,
                           inv_normalize: transforms.Normalize,
                           model,
                           target_layers,
                           targets=None,
                           number_of_samples: int = 10,
                           transparency: float = 0.60):
    """
    Function to visualize GradCam output on the data
    :param data: List[Tuple(image, label)]
    :param classes: Name of classes in the dataset
    :param inv_normalize: Mean and Standard deviation values of the dataset
    :param model: Model architecture
    :param target_layers: Layers on which GradCam should be executed
    :param targets: Classes to be focused on for GradCam
    :param number_of_samples: Number of images to print
    :param transparency: Weight of Normal image when mixed with activations
    """
    # Plot configuration
    fig = plt.figure(figsize=(10, 10))
    x_count = 5
    y_count = math.ceil(number_of_samples / x_count) 

    # Create an object for GradCam
    cam = GradCAM(model=model, target_layers=target_layers)

    # Iterate over number of specified images
    for i in range(number_of_samples):
        plt.subplot(y_count, x_count, i + 1)
        input_tensor = data[i][0]

        # Get the activations of the layer for the images
        grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
        grayscale_cam = grayscale_cam[0, :]

        # Get back the original image
        img = input_tensor.squeeze(0).to('cpu')
        img = inv_normalize(img)
        rgb_img = np.transpose(img, (1, 2, 0))
        rgb_img = rgb_img.numpy().astype(np.float32)

# Ensure the image data is within the [0, 1] range
        rgb_img = np.clip(rgb_img, 0, 1)

        # Mix the activations on the original image
        visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency)

        # Display the images on the plot
        plt.imshow(visualization)
        plt.title(r"Correct: " + classes[data[i][1].item()] + '\n' + 'Output: ' + classes[data[i][2].item()])
        plt.xticks([])
        plt.yticks([])

    plt.tight_layout()

    # Save the entire figure to a BytesIO object
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    img_var = Image.open(buf)

    return img_var