""" Implements the GPT-4 Tokenizer as a light wrapper around the RegexTokenizer. Note that this is a pretrained tokenizer. By default and inside init(), it loads the pretrained tokenizer from the `cl100k_base` tokenizer of tiktoken. """ import tiktoken from .regex import RegexTokenizer def bpe(mergeable_ranks, token, max_rank): # helper function used in get_gpt4_merges() to reconstruct the merge forest parts = [bytes([b]) for b in token] while True: min_idx = None min_rank = None for i, pair in enumerate(zip(parts[:-1], parts[1:])): rank = mergeable_ranks.get(pair[0] + pair[1]) if rank is not None and (min_rank is None or rank < min_rank): min_idx = i min_rank = rank if min_rank is None or (max_rank is not None and min_rank >= max_rank): break assert min_idx is not None parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:] return parts def recover_merges(mergeable_ranks): # the `merges` are already the byte sequences in their merged state. # so we have to recover the original pairings. We can do this by doing # a small BPE training run on all the tokens, in their order. # also see https://github.com/openai/tiktoken/issues/60 # also see https://github.com/karpathy/minbpe/issues/11#issuecomment-1950805306 merges = {} for token, rank in mergeable_ranks.items(): if len(token) == 1: continue # skip raw bytes pair = tuple(bpe(mergeable_ranks, token, max_rank=rank)) assert len(pair) == 2 # recover the integer ranks of the pair ix0 = mergeable_ranks[pair[0]] ix1 = mergeable_ranks[pair[1]] merges[(ix0, ix1)] = rank return merges GPT4_SPLIT_PATTERN = r"""'(?i:[sdmt]|ll|ve|re)|[^\r\n\p{L}\p{N}]?+\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]++[\r\n]*|\s*[\r\n]|\s+(?!\S)|\s+""" GPT4_SPECIAL_TOKENS = { '<|endoftext|>': 100257, '<|fim_prefix|>': 100258, '<|fim_middle|>': 100259, '<|fim_suffix|>': 100260, '<|endofprompt|>': 100276 } class GPT4Tokenizer(RegexTokenizer): """Lightweight wrapper on RegexTokenizer that matches GPT-4's tokenizer.""" def __init__(self): super().__init__(pattern=GPT4_SPLIT_PATTERN) # get the official tokenizer and its merges enc = tiktoken.get_encoding("cl100k_base") mergeable_ranks = enc._mergeable_ranks # the merges are those of gpt4, but we have to recover them self.merges = recover_merges(mergeable_ranks) # reconstruct the vocab from the merges vocab = {idx: bytes([idx]) for idx in range(256)} for (p0, p1), idx in self.merges.items(): vocab[idx] = vocab[p0] + vocab[p1] self.vocab = vocab # now here is another tricky part. # for some reason, the tokens corresponding to individual bytes # are permuted in a different order. This is completely non-sensical # and probably historical, but therefore we have to deal with it here. self.byte_shuffle = {i: mergeable_ranks[bytes([i])] for i in range(256)} self.inverse_byte_shuffle = {v: k for k, v in self.byte_shuffle.items()} # finally register the special tokens self.register_special_tokens(GPT4_SPECIAL_TOKENS) def _encode_chunk(self, text_bytes): # before we start processing bytes, we have to permute them text_bytes = bytes(self.byte_shuffle[b] for b in text_bytes) ids = super()._encode_chunk(text_bytes) return ids def decode(self, ids): # we have to un-permute the bytes before we decode text_bytes = b"".join(self.vocab[idx] for idx in ids) text_bytes = bytes(self.inverse_byte_shuffle[b] for b in text_bytes) text = text_bytes.decode("utf-8", errors="replace") return text # this is a pretrained tokenizer, it is not intended to be trained def train(self, text, vocab_size, verbose=False): raise NotImplementedError # save/load would require some thought. # we'd have to change save/load of base to add support for byte_shuffle... # alternatively, we could move byte_shuffle to base class, but that would # mean that we're making ugly our beautiful Tokenizer just to support # the GPT-4 tokenizer and its weird historical quirks around byte_shuffle. def save(self, file_prefix): raise NotImplementedError("GPT4Tokenizer cannot be saved.") def load(self, model_file): raise NotImplementedError("GPT4Tokenizer cannot be loaded.") def save_vocab(self, vocab_file): # just for visualization purposes let's output the GPT-4 tokens # in the exact same format as the base class would. # simple run as: # python -c "from minbpe import GPT4Tokenizer; GPT4Tokenizer().save_vocab('gpt4.vocab')" from .base import render_token # build vocab being mindful of the byte shuffle vocab = {idx: bytes([self.inverse_byte_shuffle[idx]]) for idx in range(256)} for (p0, p1), idx in self.merges.items(): vocab[idx] = vocab[p0] + vocab[p1] # now merge the shuffled bytes and write to file inverted_merges = {idx: pair for pair, idx in self.merges.items()} with open(vocab_file, "w", encoding="utf-8") as f: for idx, token in vocab.items(): s = render_token(token) if idx in inverted_merges: idx0, idx1 = inverted_merges[idx] s0 = render_token(vocab[idx0]) s1 = render_token(vocab[idx1]) f.write(f"[{s0}][{s1}] -> [{s}] {idx}\n") else: f.write(f"[{s}] {idx}\n")