Spaces:
Sleeping
Sleeping
Upload 17 files
Browse files- detect.py +236 -0
- runs/train/exp17/F1_curve.png +0 -0
- runs/train/exp17/PR_curve.png +0 -0
- runs/train/exp17/P_curve.png +0 -0
- runs/train/exp17/R_curve.png +0 -0
- runs/train/exp17/confusion_matrix.png +0 -0
- runs/train/exp17/events.out.tfevents.1715928118.abggdna-DGX-Station-A100.430083.0 +3 -0
- runs/train/exp17/hyp.yaml +28 -0
- runs/train/exp17/labels.jpg +0 -0
- runs/train/exp17/labels_correlogram.jpg +0 -0
- runs/train/exp17/opt.yaml +72 -0
- runs/train/exp17/results.csv +201 -0
- runs/train/exp17/results.png +0 -0
- runs/train/exp17/weights/best.pt +3 -0
- runs/train/exp17/weights/best_striped.pt +3 -0
- runs/train/exp17/weights/last.pt +3 -0
- runs/train/exp17/weights/last_striped.pt +3 -0
detect.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import platform
|
4 |
+
import sys
|
5 |
+
from pathlib import Path
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
FILE = Path(__file__).resolve()
|
11 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
12 |
+
if str(ROOT) not in sys.path:
|
13 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
14 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
15 |
+
|
16 |
+
from models.common import DetectMultiBackend
|
17 |
+
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
18 |
+
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
19 |
+
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
|
20 |
+
from utils.plots import Annotator, colors, save_one_box
|
21 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
22 |
+
|
23 |
+
|
24 |
+
@smart_inference_mode()
|
25 |
+
def run(
|
26 |
+
weights=ROOT / 'yolo.pt', # model path or triton URL
|
27 |
+
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
28 |
+
data=ROOT / 'data/coco.yaml', # dataset.yaml path
|
29 |
+
imgsz=(640, 640), # inference size (height, width)
|
30 |
+
conf_thres=0.25, # confidence threshold
|
31 |
+
iou_thres=0.45, # NMS IOU threshold
|
32 |
+
max_det=1000, # maximum detections per image
|
33 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
34 |
+
view_img=False, # show results
|
35 |
+
save_txt=False, # save results to *.txt
|
36 |
+
save_conf=False, # save confidences in --save-txt labels
|
37 |
+
save_crop=False, # save cropped prediction boxes
|
38 |
+
nosave=False, # do not save images/videos
|
39 |
+
classes=None, # filter by class: --class 0, or --class 0 2 3
|
40 |
+
agnostic_nms=False, # class-agnostic NMS
|
41 |
+
augment=False, # augmented inference
|
42 |
+
visualize=False, # visualize features
|
43 |
+
update=False, # update all models
|
44 |
+
project=ROOT / 'runs/detect', # save results to project/name
|
45 |
+
name='exp', # save results to project/name
|
46 |
+
exist_ok=False, # existing project/name ok, do not increment
|
47 |
+
line_thickness=3, # bounding box thickness (pixels)
|
48 |
+
hide_labels=False, # hide labels
|
49 |
+
hide_conf=False, # hide confidences
|
50 |
+
half=False, # use FP16 half-precision inference
|
51 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
52 |
+
vid_stride=1, # video frame-rate stride
|
53 |
+
):
|
54 |
+
source = str(source)
|
55 |
+
save_img = not nosave and not source.endswith('.txt') # save inference images
|
56 |
+
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
57 |
+
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
58 |
+
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
|
59 |
+
screenshot = source.lower().startswith('screen')
|
60 |
+
if is_url and is_file:
|
61 |
+
source = check_file(source) # download
|
62 |
+
|
63 |
+
# Directories
|
64 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
65 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
66 |
+
|
67 |
+
# Load model
|
68 |
+
device = select_device(device)
|
69 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
70 |
+
stride, names, pt = model.stride, model.names, model.pt
|
71 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
72 |
+
|
73 |
+
# Dataloader
|
74 |
+
bs = 1 # batch_size
|
75 |
+
if webcam:
|
76 |
+
view_img = check_imshow(warn=True)
|
77 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
78 |
+
bs = len(dataset)
|
79 |
+
elif screenshot:
|
80 |
+
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
81 |
+
else:
|
82 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
83 |
+
vid_path, vid_writer = [None] * bs, [None] * bs
|
84 |
+
|
85 |
+
# Run inference
|
86 |
+
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
87 |
+
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
88 |
+
for path, im, im0s, vid_cap, s in dataset:
|
89 |
+
with dt[0]:
|
90 |
+
im = torch.from_numpy(im).to(model.device)
|
91 |
+
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
92 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
93 |
+
if len(im.shape) == 3:
|
94 |
+
im = im[None] # expand for batch dim
|
95 |
+
|
96 |
+
# Inference
|
97 |
+
with dt[1]:
|
98 |
+
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
99 |
+
pred = model(im, augment=augment, visualize=visualize)
|
100 |
+
|
101 |
+
# NMS
|
102 |
+
with dt[2]:
|
103 |
+
pred = pred[0][1] if isinstance(pred[0], list) else pred[0]
|
104 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
105 |
+
|
106 |
+
# Second-stage classifier (optional)
|
107 |
+
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
108 |
+
|
109 |
+
# Process predictions
|
110 |
+
for i, det in enumerate(pred): # per image
|
111 |
+
seen += 1
|
112 |
+
if webcam: # batch_size >= 1
|
113 |
+
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
114 |
+
s += f'{i}: '
|
115 |
+
else:
|
116 |
+
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
117 |
+
|
118 |
+
p = Path(p) # to Path
|
119 |
+
save_path = str(save_dir / p.name) # im.jpg
|
120 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
121 |
+
s += '%gx%g ' % im.shape[2:] # print string
|
122 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
123 |
+
imc = im0.copy() if save_crop else im0 # for save_crop
|
124 |
+
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
125 |
+
if len(det):
|
126 |
+
# Rescale boxes from img_size to im0 size
|
127 |
+
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
128 |
+
|
129 |
+
# Print results
|
130 |
+
for c in det[:, 5].unique():
|
131 |
+
n = (det[:, 5] == c).sum() # detections per class
|
132 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
133 |
+
|
134 |
+
# Write results
|
135 |
+
for *xyxy, conf, cls in reversed(det):
|
136 |
+
if save_txt: # Write to file
|
137 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
138 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
139 |
+
with open(f'{txt_path}.txt', 'a') as f:
|
140 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
141 |
+
|
142 |
+
if save_img or save_crop or view_img: # Add bbox to image
|
143 |
+
c = int(cls) # integer class
|
144 |
+
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
145 |
+
annotator.box_label(xyxy, label, color=colors(c, True))
|
146 |
+
if save_crop:
|
147 |
+
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
148 |
+
|
149 |
+
# Stream results
|
150 |
+
im0 = annotator.result()
|
151 |
+
if view_img:
|
152 |
+
if platform.system() == 'Linux' and p not in windows:
|
153 |
+
windows.append(p)
|
154 |
+
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
155 |
+
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
156 |
+
cv2.imshow(str(p), im0)
|
157 |
+
cv2.waitKey(1) # 1 millisecond
|
158 |
+
|
159 |
+
# Save results (image with detections)
|
160 |
+
if save_img:
|
161 |
+
if dataset.mode == 'image':
|
162 |
+
cv2.imwrite(save_path, im0)
|
163 |
+
else: # 'video' or 'stream'
|
164 |
+
if vid_path[i] != save_path: # new video
|
165 |
+
vid_path[i] = save_path
|
166 |
+
if isinstance(vid_writer[i], cv2.VideoWriter):
|
167 |
+
vid_writer[i].release() # release previous video writer
|
168 |
+
if vid_cap: # video
|
169 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
170 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
171 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
172 |
+
else: # stream
|
173 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
174 |
+
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
175 |
+
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
176 |
+
vid_writer[i].write(im0)
|
177 |
+
|
178 |
+
# Print time (inference-only)
|
179 |
+
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
180 |
+
|
181 |
+
# Print results
|
182 |
+
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
183 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
184 |
+
if save_txt or save_img:
|
185 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
186 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
187 |
+
if update:
|
188 |
+
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
189 |
+
|
190 |
+
|
191 |
+
def parse_opt():
|
192 |
+
parser = argparse.ArgumentParser()
|
193 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path or triton URL')
|
194 |
+
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
195 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
196 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
197 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
198 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
199 |
+
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
200 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
201 |
+
parser.add_argument('--view-img', action='store_true', help='show results')
|
202 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
203 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
204 |
+
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
205 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
206 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
207 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
208 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
209 |
+
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
210 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
211 |
+
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
|
212 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
213 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
214 |
+
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
215 |
+
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
216 |
+
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
217 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
218 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
219 |
+
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
220 |
+
opt = parser.parse_args()
|
221 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
222 |
+
print_args(vars(opt))
|
223 |
+
return opt
|
224 |
+
|
225 |
+
|
226 |
+
def main(opt):
|
227 |
+
check_requirements(exclude=('tensorboard', 'thop'))
|
228 |
+
run(**vars(opt))
|
229 |
+
|
230 |
+
|
231 |
+
# if __name__ == "__main__":
|
232 |
+
# opt = parse_opt()
|
233 |
+
# main(opt)
|
234 |
+
|
235 |
+
|
236 |
+
|
runs/train/exp17/F1_curve.png
ADDED
![]() |
runs/train/exp17/PR_curve.png
ADDED
![]() |
runs/train/exp17/P_curve.png
ADDED
![]() |
runs/train/exp17/R_curve.png
ADDED
![]() |
runs/train/exp17/confusion_matrix.png
ADDED
![]() |
runs/train/exp17/events.out.tfevents.1715928118.abggdna-DGX-Station-A100.430083.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e47d5e6569fb0cf38b99e6a102eeab71dd130cb478d5dd288158b4fae849033c
|
3 |
+
size 1685033
|
runs/train/exp17/hyp.yaml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lr0: 0.01
|
2 |
+
lrf: 0.01
|
3 |
+
momentum: 0.937
|
4 |
+
weight_decay: 0.0005
|
5 |
+
warmup_epochs: 3.0
|
6 |
+
warmup_momentum: 0.8
|
7 |
+
warmup_bias_lr: 0.1
|
8 |
+
box: 7.5
|
9 |
+
cls: 0.5
|
10 |
+
cls_pw: 1.0
|
11 |
+
dfl: 1.5
|
12 |
+
obj_pw: 1.0
|
13 |
+
iou_t: 0.2
|
14 |
+
anchor_t: 5.0
|
15 |
+
fl_gamma: 0.0
|
16 |
+
hsv_h: 0.015
|
17 |
+
hsv_s: 0.7
|
18 |
+
hsv_v: 0.4
|
19 |
+
degrees: 0.0
|
20 |
+
translate: 0.1
|
21 |
+
scale: 0.9
|
22 |
+
shear: 0.0
|
23 |
+
perspective: 0.0
|
24 |
+
flipud: 0.0
|
25 |
+
fliplr: 0.5
|
26 |
+
mosaic: 1.0
|
27 |
+
mixup: 0.15
|
28 |
+
copy_paste: 0.3
|
runs/train/exp17/labels.jpg
ADDED
![]() |
runs/train/exp17/labels_correlogram.jpg
ADDED
![]() |
runs/train/exp17/opt.yaml
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
weights: /raid/users/mohammadibrahim-st/TSAI/Assignment15/yolov9/weights/gelan-c.pt
|
2 |
+
cfg: models/detect/gelan-c.yaml
|
3 |
+
data: /raid/users/mohammadibrahim-st/TSAI/Assignment15/yolov9/jetdata/data.yaml
|
4 |
+
hyp:
|
5 |
+
lr0: 0.01
|
6 |
+
lrf: 0.01
|
7 |
+
momentum: 0.937
|
8 |
+
weight_decay: 0.0005
|
9 |
+
warmup_epochs: 3.0
|
10 |
+
warmup_momentum: 0.8
|
11 |
+
warmup_bias_lr: 0.1
|
12 |
+
box: 7.5
|
13 |
+
cls: 0.5
|
14 |
+
cls_pw: 1.0
|
15 |
+
dfl: 1.5
|
16 |
+
obj_pw: 1.0
|
17 |
+
iou_t: 0.2
|
18 |
+
anchor_t: 5.0
|
19 |
+
fl_gamma: 0.0
|
20 |
+
hsv_h: 0.015
|
21 |
+
hsv_s: 0.7
|
22 |
+
hsv_v: 0.4
|
23 |
+
degrees: 0.0
|
24 |
+
translate: 0.1
|
25 |
+
scale: 0.9
|
26 |
+
shear: 0.0
|
27 |
+
perspective: 0.0
|
28 |
+
flipud: 0.0
|
29 |
+
fliplr: 0.5
|
30 |
+
mosaic: 1.0
|
31 |
+
mixup: 0.15
|
32 |
+
copy_paste: 0.3
|
33 |
+
epochs: 200
|
34 |
+
batch_size: 512
|
35 |
+
imgsz: 640
|
36 |
+
rect: false
|
37 |
+
resume: false
|
38 |
+
nosave: false
|
39 |
+
noval: false
|
40 |
+
noautoanchor: false
|
41 |
+
noplots: false
|
42 |
+
evolve: null
|
43 |
+
bucket: ''
|
44 |
+
cache: null
|
45 |
+
image_weights: false
|
46 |
+
device: '0'
|
47 |
+
multi_scale: false
|
48 |
+
single_cls: false
|
49 |
+
optimizer: SGD
|
50 |
+
sync_bn: false
|
51 |
+
workers: 8
|
52 |
+
project: runs/train
|
53 |
+
name: exp
|
54 |
+
exist_ok: false
|
55 |
+
quad: false
|
56 |
+
cos_lr: false
|
57 |
+
flat_cos_lr: false
|
58 |
+
fixed_lr: false
|
59 |
+
label_smoothing: 0.0
|
60 |
+
patience: 100
|
61 |
+
freeze:
|
62 |
+
- 0
|
63 |
+
save_period: -1
|
64 |
+
seed: 0
|
65 |
+
local_rank: -1
|
66 |
+
min_items: 0
|
67 |
+
close_mosaic: 15
|
68 |
+
entity: null
|
69 |
+
upload_dataset: false
|
70 |
+
bbox_interval: -1
|
71 |
+
artifact_alias: latest
|
72 |
+
save_dir: runs/train/exp17
|
runs/train/exp17/results.csv
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision, metrics/recall, metrics/mAP_0.5,metrics/mAP_0.5:0.95, val/box_loss, val/cls_loss, val/dfl_loss, x/lr0, x/lr1, x/lr2
|
2 |
+
0, 1.2863, 3.1061, 1.4301, 0.72322, 0.12445, 0.396, 0.30629, 0.90551, 2.8054, 1.2081, 0.1, 0, 0
|
3 |
+
1, 1.1504, 3.1989, 1.3783, 0.51939, 0.14881, 0.22899, 0.1664, 0.91291, 2.864, 1.2205, 0.0991, 9.9505e-05, 9.9505e-05
|
4 |
+
2, 1.169, 3.1728, 1.3538, 0.49981, 0.14275, 0.21889, 0.15949, 0.91305, 2.87, 1.2206, 0.098198, 0.00019802, 0.00019802
|
5 |
+
3, 1.2377, 3.1007, 1.3988, 0.47155, 0.1369, 0.21304, 0.15543, 0.91474, 2.8775, 1.2237, 0.097296, 0.00029554, 0.00029554
|
6 |
+
4, 1.1112, 3.1902, 1.3435, 0.4541, 0.13866, 0.20779, 0.15046, 0.9172, 2.8884, 1.2244, 0.096392, 0.00039208, 0.00039208
|
7 |
+
5, 1.2161, 3.1322, 1.452, 0.45701, 0.1369, 0.21009, 0.15362, 0.92028, 2.8956, 1.2258, 0.095488, 0.00048762, 0.00048762
|
8 |
+
6, 1.1506, 3.0552, 1.3543, 0.43391, 0.13095, 0.20509, 0.15253, 0.92115, 2.8968, 1.2274, 0.094582, 0.00058218, 0.00058218
|
9 |
+
7, 1.1882, 3.1866, 1.3566, 0.44917, 0.13105, 0.1992, 0.14545, 0.91943, 2.8983, 1.2288, 0.093676, 0.00067574, 0.00067574
|
10 |
+
8, 1.2179, 3.1888, 1.4336, 0.58353, 0.32738, 0.38192, 0.2807, 0.9068, 2.4028, 1.2249, 0.092768, 0.00076832, 0.00076832
|
11 |
+
9, 1.2549, 2.9065, 1.4141, 0.56903, 0.32143, 0.38139, 0.27692, 0.90038, 2.3887, 1.2255, 0.09186, 0.00085991, 0.00085991
|
12 |
+
10, 1.2415, 2.7985, 1.4233, 0.66173, 0.51235, 0.62242, 0.44292, 0.92511, 1.7506, 1.2473, 0.090951, 0.0009505, 0.0009505
|
13 |
+
11, 1.1309, 2.3113, 1.3502, 0.88306, 0.8091, 0.86734, 0.60694, 0.91594, 1.2206, 1.2531, 0.09004, 0.0010401, 0.0010401
|
14 |
+
12, 1.1292, 1.7351, 1.3807, 0.91582, 0.86905, 0.92821, 0.63578, 0.88646, 1.4646, 1.2271, 0.089129, 0.0011287, 0.0011287
|
15 |
+
13, 1.2066, 1.7387, 1.4284, 0.90932, 0.89539, 0.94036, 0.67368, 0.89904, 1.3491, 1.2294, 0.088216, 0.0012163, 0.0012163
|
16 |
+
14, 1.1213, 1.5526, 1.3846, 0.94966, 0.89834, 0.96243, 0.70091, 0.88567, 1.03, 1.2127, 0.087303, 0.001303, 0.001303
|
17 |
+
15, 1.1783, 1.4994, 1.41, 0.92347, 0.88095, 0.94858, 0.697, 0.89834, 0.87937, 1.2071, 0.086389, 0.0013886, 0.0013886
|
18 |
+
16, 1.1391, 1.3901, 1.295, 0.91073, 0.91091, 0.95555, 0.69164, 0.91555, 0.79157, 1.2432, 0.085473, 0.0014733, 0.0014733
|
19 |
+
17, 1.0969, 1.2528, 1.3597, 0.92818, 0.92314, 0.96475, 0.70433, 0.90529, 0.71235, 1.2358, 0.084557, 0.0015569, 0.0015569
|
20 |
+
18, 1.0531, 1.0904, 1.2447, 0.93648, 0.97024, 0.9764, 0.68427, 0.90964, 0.65445, 1.2448, 0.08364, 0.0016396, 0.0016396
|
21 |
+
19, 1.0061, 0.96635, 1.2435, 0.96305, 0.92857, 0.98047, 0.70856, 0.90477, 0.61808, 1.2709, 0.082721, 0.0017213, 0.0017213
|
22 |
+
20, 1.1099, 1.0252, 1.3296, 0.95249, 0.95462, 0.98497, 0.71831, 0.88381, 0.5515, 1.2494, 0.081802, 0.001802, 0.001802
|
23 |
+
21, 1.061, 0.97827, 1.3227, 0.95917, 0.9788, 0.98905, 0.72294, 0.8751, 0.52498, 1.2316, 0.080882, 0.0018817, 0.0018817
|
24 |
+
22, 1.008, 0.83631, 1.2444, 0.95365, 0.97975, 0.98767, 0.71682, 0.86868, 0.52046, 1.2292, 0.07996, 0.0019604, 0.0019604
|
25 |
+
23, 1.0466, 0.82093, 1.2818, 0.94876, 0.96429, 0.97978, 0.67726, 0.90122, 0.55727, 1.2386, 0.079038, 0.0020381, 0.0020381
|
26 |
+
24, 0.97307, 0.73559, 1.2347, 0.95098, 0.95833, 0.98896, 0.73359, 0.86494, 0.46203, 1.203, 0.078115, 0.0021149, 0.0021149
|
27 |
+
25, 1.0561, 0.82754, 1.2602, 0.96559, 0.97619, 0.98765, 0.70983, 0.85521, 0.42727, 1.1973, 0.077191, 0.0021906, 0.0021906
|
28 |
+
26, 0.99123, 0.70492, 1.2286, 0.96464, 0.97423, 0.98898, 0.74488, 0.84657, 0.39785, 1.2009, 0.076265, 0.0022654, 0.0022654
|
29 |
+
27, 0.9375, 0.72117, 1.2417, 0.94512, 0.96429, 0.97553, 0.67703, 0.88598, 0.53004, 1.2273, 0.075339, 0.0023391, 0.0023391
|
30 |
+
28, 0.92231, 0.65026, 1.1683, 0.96616, 0.96429, 0.99, 0.75453, 0.84073, 0.38796, 1.1839, 0.074412, 0.0024119, 0.0024119
|
31 |
+
29, 0.9651, 0.73181, 1.2258, 0.9529, 0.96429, 0.98054, 0.72255, 0.88918, 0.54566, 1.2272, 0.073484, 0.0024837, 0.0024837
|
32 |
+
30, 0.94164, 0.7422, 1.2258, 0.96686, 0.97619, 0.9866, 0.74447, 0.86661, 0.40969, 1.2225, 0.072554, 0.0025545, 0.0025545
|
33 |
+
31, 0.89618, 0.716, 1.1829, 0.93258, 0.98804, 0.97731, 0.69268, 0.85588, 0.46575, 1.2153, 0.071624, 0.0026243, 0.0026243
|
34 |
+
32, 0.83893, 0.66106, 1.1446, 0.99379, 0.95203, 0.992, 0.76088, 0.82352, 0.35312, 1.1936, 0.070693, 0.0026931, 0.0026931
|
35 |
+
33, 0.84892, 0.64224, 1.1344, 0.95831, 0.98214, 0.98715, 0.71336, 0.81904, 0.41777, 1.1693, 0.069761, 0.0027609, 0.0027609
|
36 |
+
34, 0.869, 0.56056, 1.1346, 0.97644, 0.98682, 0.99398, 0.7918, 0.7789, 0.35202, 1.1415, 0.068828, 0.0028278, 0.0028278
|
37 |
+
35, 0.95575, 0.71104, 1.2305, 0.98113, 0.98214, 0.99436, 0.78737, 0.77044, 0.39751, 1.128, 0.067894, 0.0028936, 0.0028936
|
38 |
+
36, 0.92306, 0.64009, 1.1544, 0.97333, 0.9881, 0.99337, 0.80311, 0.74757, 0.32237, 1.1104, 0.066958, 0.0029585, 0.0029585
|
39 |
+
37, 0.88298, 0.65265, 1.2094, 0.948, 0.97619, 0.99105, 0.7728, 0.77363, 0.34879, 1.1251, 0.066022, 0.0030223, 0.0030223
|
40 |
+
38, 0.879, 0.57369, 1.1721, 0.97558, 0.97619, 0.99217, 0.76516, 0.73812, 0.4666, 1.1047, 0.065085, 0.0030852, 0.0030852
|
41 |
+
39, 0.8703, 0.66315, 1.1564, 0.97096, 0.97024, 0.99223, 0.80504, 0.7212, 0.38096, 1.088, 0.064147, 0.0031471, 0.0031471
|
42 |
+
40, 0.85439, 0.6174, 1.1672, 0.98204, 0.97619, 0.99066, 0.78735, 0.75855, 0.3414, 1.1033, 0.063208, 0.003208, 0.003208
|
43 |
+
41, 0.85997, 0.57654, 1.1975, 0.96445, 0.97619, 0.98829, 0.80212, 0.7421, 0.3569, 1.0911, 0.062268, 0.0032679, 0.0032679
|
44 |
+
42, 0.86906, 0.56864, 1.1611, 0.98643, 0.9881, 0.99227, 0.78465, 0.69265, 0.33771, 1.0632, 0.061327, 0.0033268, 0.0033268
|
45 |
+
43, 0.85164, 0.51982, 1.1472, 0.97574, 0.99405, 0.99355, 0.82467, 0.69787, 0.30997, 1.0698, 0.060385, 0.0033847, 0.0033847
|
46 |
+
44, 0.83988, 0.55336, 1.1463, 0.97549, 0.9881, 0.99078, 0.79266, 0.7069, 0.32895, 1.0702, 0.059442, 0.0034417, 0.0034417
|
47 |
+
45, 0.87285, 0.52966, 1.1421, 0.98479, 0.9881, 0.99299, 0.80628, 0.72238, 0.41943, 1.079, 0.058498, 0.0034976, 0.0034976
|
48 |
+
46, 0.84538, 0.58204, 1.1466, 0.97439, 0.98214, 0.99344, 0.80474, 0.76293, 0.38162, 1.1069, 0.057553, 0.0035526, 0.0035526
|
49 |
+
47, 0.79293, 0.53513, 1.0944, 0.96713, 0.9881, 0.99093, 0.7707, 0.76473, 0.37751, 1.0991, 0.056607, 0.0036065, 0.0036065
|
50 |
+
48, 0.88223, 0.61747, 1.2207, 0.9625, 0.94048, 0.97508, 0.78668, 0.76858, 0.39361, 1.1073, 0.05566, 0.0036595, 0.0036595
|
51 |
+
49, 0.90003, 0.5369, 1.1477, 0.974, 0.9881, 0.99412, 0.78641, 0.71231, 0.31843, 1.0748, 0.054712, 0.0037115, 0.0037115
|
52 |
+
50, 0.87062, 0.54139, 1.1603, 0.98344, 0.9881, 0.99063, 0.79145, 0.77369, 0.32728, 1.1042, 0.053763, 0.0037625, 0.0037625
|
53 |
+
51, 0.9455, 0.56973, 1.2029, 0.99299, 0.99405, 0.99494, 0.8035, 0.72804, 0.28551, 1.0876, 0.052813, 0.0038125, 0.0038125
|
54 |
+
52, 0.8583, 0.58339, 1.1947, 0.99272, 0.99405, 0.99488, 0.80963, 0.72173, 0.32536, 1.0894, 0.051862, 0.0038615, 0.0038615
|
55 |
+
53, 0.79761, 0.51922, 1.096, 0.98233, 0.99294, 0.99354, 0.77499, 0.70388, 0.372, 1.0712, 0.05091, 0.0039095, 0.0039095
|
56 |
+
54, 0.8711, 0.69408, 1.1526, 0.9869, 0.98214, 0.99393, 0.77898, 0.76004, 0.33437, 1.0945, 0.049957, 0.0039566, 0.0039566
|
57 |
+
55, 0.82453, 0.5198, 1.1588, 0.9757, 0.99405, 0.99245, 0.83072, 0.694, 0.2994, 1.0581, 0.049003, 0.0040026, 0.0040026
|
58 |
+
56, 0.7962, 0.55683, 1.1551, 0.99215, 0.9881, 0.99429, 0.8269, 0.70771, 0.30803, 1.0679, 0.048048, 0.0040477, 0.0040477
|
59 |
+
57, 0.80429, 0.53516, 1.1486, 1, 0.99249, 0.995, 0.81716, 0.73159, 0.32273, 1.0917, 0.047092, 0.0040917, 0.0040917
|
60 |
+
58, 0.7722, 0.49889, 1.0932, 0.99709, 0.9881, 0.99488, 0.81453, 0.715, 0.3101, 1.0635, 0.046135, 0.0041348, 0.0041348
|
61 |
+
59, 0.84606, 0.49644, 1.1099, 0.98154, 1, 0.99446, 0.82089, 0.71391, 0.33529, 1.0468, 0.045177, 0.0041769, 0.0041769
|
62 |
+
60, 0.84208, 0.52136, 1.1621, 0.99764, 0.9881, 0.99477, 0.82112, 0.70948, 0.30015, 1.0504, 0.044218, 0.004218, 0.004218
|
63 |
+
61, 0.8278, 0.48651, 1.1312, 0.98153, 0.99405, 0.99465, 0.80872, 0.75523, 0.31502, 1.086, 0.043258, 0.0042581, 0.0042581
|
64 |
+
62, 0.82818, 0.46796, 1.0874, 0.97014, 0.99405, 0.99202, 0.74949, 0.77131, 0.39003, 1.0968, 0.042297, 0.0042972, 0.0042972
|
65 |
+
63, 0.83503, 0.53307, 1.1131, 1, 0.98025, 0.99477, 0.80822, 0.74757, 0.35181, 1.1056, 0.041335, 0.0043353, 0.0043353
|
66 |
+
64, 0.86301, 0.50478, 1.109, 0.97752, 0.92857, 0.97504, 0.70578, 0.94196, 0.43146, 1.2077, 0.040372, 0.0043725, 0.0043725
|
67 |
+
65, 0.83837, 0.477, 1.0987, 0.93669, 0.94643, 0.98279, 0.75786, 0.76926, 0.43338, 1.1162, 0.039409, 0.0044086, 0.0044086
|
68 |
+
66, 0.76353, 0.46847, 1.0813, 0.95952, 0.95833, 0.99069, 0.7557, 0.85523, 0.4211, 1.1551, 0.038444, 0.0044438, 0.0044438
|
69 |
+
67, 0.85791, 0.48364, 1.1141, 0.94791, 0.9881, 0.99037, 0.77577, 0.77892, 0.38289, 1.1106, 0.037478, 0.0044779, 0.0044779
|
70 |
+
68, 0.82936, 0.50646, 1.1506, 0.97016, 0.96766, 0.98541, 0.7379, 0.96432, 0.42138, 1.2042, 0.036511, 0.0045111, 0.0045111
|
71 |
+
69, 0.75574, 0.47054, 1.1135, 0.99723, 0.96429, 0.99325, 0.78142, 0.8058, 0.35877, 1.1146, 0.035543, 0.0045433, 0.0045433
|
72 |
+
70, 0.8181, 0.51114, 1.1565, 0.98787, 0.96962, 0.9833, 0.73581, 0.92543, 0.38416, 1.156, 0.034574, 0.0045745, 0.0045745
|
73 |
+
71, 0.79932, 0.49713, 1.1194, 0.98729, 0.9881, 0.99452, 0.77688, 0.81555, 0.36104, 1.1025, 0.033605, 0.0046047, 0.0046047
|
74 |
+
72, 0.7872, 0.50481, 1.1255, 0.97583, 0.96109, 0.9777, 0.72437, 0.9388, 0.4087, 1.1819, 0.032634, 0.0046339, 0.0046339
|
75 |
+
73, 0.89056, 0.52219, 1.1548, 0.99404, 0.99309, 0.99494, 0.8227, 0.68502, 0.31634, 1.0331, 0.031662, 0.0046621, 0.0046621
|
76 |
+
74, 0.76092, 0.49489, 1.0551, 0.96966, 0.98214, 0.98161, 0.70101, 0.87457, 0.44216, 1.1398, 0.030689, 0.0046894, 0.0046894
|
77 |
+
75, 0.83961, 0.56799, 1.0695, 0.97326, 0.98214, 0.99264, 0.79487, 0.68423, 0.39247, 1.0217, 0.029716, 0.0047156, 0.0047156
|
78 |
+
76, 0.84221, 0.52359, 1.1355, 0.97025, 0.9881, 0.98883, 0.794, 0.77288, 0.41281, 1.0734, 0.028741, 0.0047409, 0.0047409
|
79 |
+
77, 0.8833, 0.56953, 1.1449, 0.98396, 0.96429, 0.98882, 0.75984, 0.87633, 0.44183, 1.1259, 0.027765, 0.0047651, 0.0047651
|
80 |
+
78, 0.83814, 0.49852, 1.0776, 0.98362, 0.97024, 0.99344, 0.79641, 0.70411, 0.38459, 1.0429, 0.026788, 0.0047884, 0.0047884
|
81 |
+
79, 0.75423, 0.44198, 1.0818, 0.99207, 0.95833, 0.9851, 0.78593, 0.74723, 0.37348, 1.0547, 0.025811, 0.0048107, 0.0048107
|
82 |
+
80, 0.89589, 0.51033, 1.1317, 0.97576, 0.97024, 0.98829, 0.81822, 0.69454, 0.3626, 1.0418, 0.024832, 0.004832, 0.004832
|
83 |
+
81, 0.82437, 0.48102, 1.0987, 0.97358, 0.96429, 0.98989, 0.80238, 0.72383, 0.45105, 1.0714, 0.023852, 0.0048523, 0.0048523
|
84 |
+
82, 0.76965, 0.53643, 1.104, 0.9655, 0.94643, 0.97084, 0.79314, 0.76359, 0.41388, 1.0868, 0.022872, 0.0048716, 0.0048716
|
85 |
+
83, 0.87098, 0.52553, 1.1292, 0.9356, 0.95121, 0.97677, 0.76402, 0.82819, 0.46472, 1.1314, 0.02189, 0.0048899, 0.0048899
|
86 |
+
84, 0.75919, 0.45591, 1.0588, 0.94961, 0.95833, 0.97034, 0.77311, 0.75357, 0.42845, 1.1232, 0.020907, 0.0049073, 0.0049073
|
87 |
+
85, 0.8241, 0.53043, 1.1436, 0.95055, 0.95833, 0.96753, 0.75885, 0.8139, 0.40864, 1.1246, 0.019924, 0.0049236, 0.0049236
|
88 |
+
86, 0.83439, 0.48864, 1.102, 0.96491, 0.95238, 0.98788, 0.77808, 0.78104, 0.39673, 1.1202, 0.018939, 0.004939, 0.004939
|
89 |
+
87, 0.86568, 0.55274, 1.181, 0.97423, 0.94048, 0.9806, 0.7519, 0.87616, 0.4349, 1.1675, 0.017953, 0.0049533, 0.0049533
|
90 |
+
88, 0.86136, 0.51821, 1.1281, 0.98714, 0.98214, 0.99193, 0.8137, 0.74195, 0.39169, 1.0866, 0.016967, 0.0049667, 0.0049667
|
91 |
+
89, 0.85822, 0.59239, 1.2064, 0.96577, 0.95238, 0.98328, 0.74607, 0.92802, 0.44499, 1.1763, 0.015979, 0.0049791, 0.0049791
|
92 |
+
90, 0.86338, 0.52394, 1.1322, 0.98666, 0.95238, 0.99105, 0.79989, 0.75103, 0.40134, 1.0926, 0.01499, 0.0049905, 0.0049905
|
93 |
+
91, 0.86905, 0.52845, 1.1244, 0.98474, 0.97619, 0.99295, 0.77124, 0.83622, 0.39444, 1.1258, 0.014001, 0.0050009, 0.0050009
|
94 |
+
92, 0.86438, 0.55224, 1.1603, 0.989, 0.95833, 0.99379, 0.82337, 0.73367, 0.36334, 1.0767, 0.01301, 0.0050103, 0.0050103
|
95 |
+
93, 0.78874, 0.52104, 1.1242, 0.9878, 0.96427, 0.99291, 0.81476, 0.74098, 0.41234, 1.0911, 0.012019, 0.0050187, 0.0050187
|
96 |
+
94, 0.81468, 0.51466, 1.1076, 0.95843, 0.96059, 0.98507, 0.78916, 0.77834, 0.41745, 1.1178, 0.011026, 0.0050262, 0.0050262
|
97 |
+
95, 0.8333, 0.52789, 1.1453, 0.91964, 0.97024, 0.97285, 0.75692, 0.86712, 0.51895, 1.1752, 0.010033, 0.0050326, 0.0050326
|
98 |
+
96, 0.78188, 0.49792, 1.0896, 0.98855, 0.95238, 0.98573, 0.80829, 0.73437, 0.37804, 1.0994, 0.0090381, 0.0050381, 0.0050381
|
99 |
+
97, 0.74172, 0.49014, 1.0749, 0.9118, 0.96429, 0.96833, 0.77673, 0.78787, 0.49616, 1.1401, 0.0080425, 0.0050425, 0.0050425
|
100 |
+
98, 0.67535, 0.46949, 1.0251, 0.94583, 0.93543, 0.98347, 0.79913, 0.73478, 0.39646, 1.1167, 0.007046, 0.005046, 0.005046
|
101 |
+
99, 0.7823, 0.4844, 1.1244, 0.91636, 0.97828, 0.97987, 0.80893, 0.70543, 0.41066, 1.0868, 0.0060485, 0.0050485, 0.0050485
|
102 |
+
100, 0.80677, 0.48579, 1.122, 0.90966, 0.95902, 0.97464, 0.78869, 0.75488, 0.42431, 1.1192, 0.00505, 0.00505, 0.00505
|
103 |
+
101, 0.7982, 0.50613, 1.1089, 0.95909, 0.96429, 0.98775, 0.81388, 0.70274, 0.36898, 1.0786, 0.00505, 0.00505, 0.00505
|
104 |
+
102, 0.80979, 0.49781, 1.1344, 0.94748, 0.96642, 0.98323, 0.81744, 0.69671, 0.41185, 1.0774, 0.0050005, 0.0050005, 0.0050005
|
105 |
+
103, 0.79795, 0.51386, 1.1096, 0.9311, 0.92857, 0.9715, 0.80029, 0.713, 0.43215, 1.1066, 0.004951, 0.004951, 0.004951
|
106 |
+
104, 0.841, 0.58633, 1.1166, 0.96965, 0.95086, 0.98104, 0.77145, 0.78515, 0.53154, 1.1249, 0.0049015, 0.0049015, 0.0049015
|
107 |
+
105, 0.77651, 0.55305, 1.1014, 0.94928, 0.875, 0.95401, 0.7492, 0.79761, 0.52209, 1.143, 0.004852, 0.004852, 0.004852
|
108 |
+
106, 0.7954, 0.51476, 1.1453, 0.93989, 0.85714, 0.95736, 0.758, 0.79179, 0.53813, 1.1258, 0.0048025, 0.0048025, 0.0048025
|
109 |
+
107, 0.76338, 0.50329, 1.0996, 0.9203, 0.96223, 0.98109, 0.81011, 0.6856, 0.48159, 1.043, 0.004753, 0.004753, 0.004753
|
110 |
+
108, 0.76953, 0.48711, 1.0916, 0.9641, 0.98214, 0.99131, 0.82111, 0.68863, 0.43217, 1.0773, 0.0047035, 0.0047035, 0.0047035
|
111 |
+
109, 0.74967, 0.47267, 1.0976, 0.92189, 0.9881, 0.98468, 0.83137, 0.65804, 0.42843, 1.0635, 0.004654, 0.004654, 0.004654
|
112 |
+
110, 0.86951, 0.56621, 1.1875, 0.95709, 0.96429, 0.98381, 0.7808, 0.76859, 0.46972, 1.093, 0.0046045, 0.0046045, 0.0046045
|
113 |
+
111, 0.78648, 0.47928, 1.0772, 0.93767, 0.98501, 0.98579, 0.80272, 0.72961, 0.48242, 1.0932, 0.004555, 0.004555, 0.004555
|
114 |
+
112, 0.80282, 0.50419, 1.1209, 0.88869, 0.95238, 0.9636, 0.71251, 0.8974, 0.64363, 1.177, 0.0045055, 0.0045055, 0.0045055
|
115 |
+
113, 0.84059, 0.50955, 1.1049, 0.94651, 0.92857, 0.97468, 0.7465, 0.83462, 0.6182, 1.1676, 0.004456, 0.004456, 0.004456
|
116 |
+
114, 0.82283, 0.52175, 1.1288, 0.92064, 0.94643, 0.96943, 0.73534, 0.83771, 0.70938, 1.1753, 0.0044065, 0.0044065, 0.0044065
|
117 |
+
115, 0.73194, 0.46397, 1.0603, 0.92323, 0.93064, 0.96113, 0.71062, 0.90345, 0.65734, 1.2832, 0.004357, 0.004357, 0.004357
|
118 |
+
116, 0.78508, 0.53381, 1.1043, 0.91254, 0.91071, 0.94636, 0.72659, 0.88562, 0.56586, 1.2307, 0.0043075, 0.0043075, 0.0043075
|
119 |
+
117, 0.72134, 0.47699, 1.0634, 0.92543, 0.92857, 0.95689, 0.75587, 0.83182, 0.51352, 1.1748, 0.004258, 0.004258, 0.004258
|
120 |
+
118, 0.74407, 0.44188, 1.0619, 0.95024, 0.92857, 0.96492, 0.76354, 0.81059, 0.53448, 1.1563, 0.0042085, 0.0042085, 0.0042085
|
121 |
+
119, 0.87626, 0.53526, 1.1493, 0.92984, 0.94668, 0.96556, 0.75755, 0.83604, 0.54401, 1.1814, 0.004159, 0.004159, 0.004159
|
122 |
+
120, 0.77068, 0.45216, 1.0622, 0.91089, 0.8631, 0.93058, 0.71991, 0.88346, 0.60728, 1.2533, 0.0041095, 0.0041095, 0.0041095
|
123 |
+
121, 0.73363, 0.46202, 1.0786, 0.90289, 0.83016, 0.91189, 0.6814, 0.93533, 0.71814, 1.2826, 0.00406, 0.00406, 0.00406
|
124 |
+
122, 0.75129, 0.49246, 1.0559, 0.97124, 0.94048, 0.97734, 0.78607, 0.77709, 0.51759, 1.1356, 0.0040105, 0.0040105, 0.0040105
|
125 |
+
123, 0.72218, 0.45853, 1.078, 0.9851, 0.95238, 0.98843, 0.78673, 0.7776, 0.48381, 1.1113, 0.003961, 0.003961, 0.003961
|
126 |
+
124, 0.80005, 0.47454, 1.1238, 0.96307, 0.93128, 0.97685, 0.76352, 0.7833, 0.52983, 1.1238, 0.0039115, 0.0039115, 0.0039115
|
127 |
+
125, 0.72579, 0.47907, 1.046, 0.98664, 0.97024, 0.99027, 0.77137, 0.76487, 0.50608, 1.0917, 0.003862, 0.003862, 0.003862
|
128 |
+
126, 0.7207, 0.46826, 1.0692, 0.99512, 0.97024, 0.99141, 0.84044, 0.6433, 0.39043, 1.028, 0.0038125, 0.0038125, 0.0038125
|
129 |
+
127, 0.76085, 0.48162, 1.1294, 0.99034, 0.97024, 0.98713, 0.80969, 0.71428, 0.41234, 1.058, 0.003763, 0.003763, 0.003763
|
130 |
+
128, 0.73831, 0.46444, 1.1037, 0.98545, 0.99405, 0.99458, 0.8305, 0.67905, 0.35062, 1.0411, 0.0037135, 0.0037135, 0.0037135
|
131 |
+
129, 0.72811, 0.47268, 1.1282, 0.99384, 0.96086, 0.99341, 0.76412, 0.82261, 0.45602, 1.1237, 0.003664, 0.003664, 0.003664
|
132 |
+
130, 0.72596, 0.45737, 1.0658, 0.97029, 0.97207, 0.98901, 0.75315, 0.83251, 0.47538, 1.1181, 0.0036145, 0.0036145, 0.0036145
|
133 |
+
131, 0.77691, 0.48424, 1.0801, 0.98775, 0.97619, 0.99067, 0.83192, 0.69187, 0.35478, 1.0362, 0.003565, 0.003565, 0.003565
|
134 |
+
132, 0.79632, 0.46557, 1.0864, 0.98519, 0.99405, 0.99476, 0.8458, 0.66799, 0.3403, 1.0156, 0.0035155, 0.0035155, 0.0035155
|
135 |
+
133, 0.81535, 0.51813, 1.1305, 0.98222, 0.98639, 0.99181, 0.82292, 0.70201, 0.38019, 1.0547, 0.003466, 0.003466, 0.003466
|
136 |
+
134, 0.76388, 0.49316, 1.1337, 0.97468, 0.96429, 0.98831, 0.81804, 0.68525, 0.42371, 1.0456, 0.0034165, 0.0034165, 0.0034165
|
137 |
+
135, 0.76114, 0.47913, 1.0855, 0.98448, 0.97619, 0.99236, 0.83361, 0.67123, 0.37119, 1.0314, 0.003367, 0.003367, 0.003367
|
138 |
+
136, 0.73757, 0.49548, 1.0892, 0.9862, 0.9881, 0.99218, 0.85406, 0.61936, 0.35766, 0.99999, 0.0033175, 0.0033175, 0.0033175
|
139 |
+
137, 0.73458, 0.49768, 1.1273, 0.9855, 0.9881, 0.99329, 0.8508, 0.63643, 0.3318, 1.0172, 0.003268, 0.003268, 0.003268
|
140 |
+
138, 0.71372, 0.43698, 1.0459, 0.98563, 0.98214, 0.99471, 0.85927, 0.62885, 0.32588, 1.0071, 0.0032185, 0.0032185, 0.0032185
|
141 |
+
139, 0.64329, 0.41644, 1.0855, 0.98795, 0.97625, 0.99399, 0.85873, 0.62346, 0.33547, 0.99636, 0.003169, 0.003169, 0.003169
|
142 |
+
140, 0.67676, 0.42034, 1.0526, 0.99978, 0.97619, 0.99459, 0.86116, 0.60861, 0.32545, 0.99048, 0.0031195, 0.0031195, 0.0031195
|
143 |
+
141, 0.72983, 0.50078, 1.0828, 0.96513, 0.9885, 0.99314, 0.86773, 0.58031, 0.31412, 0.96858, 0.00307, 0.00307, 0.00307
|
144 |
+
142, 0.71081, 0.46899, 1.1096, 0.99404, 0.99317, 0.99387, 0.87063, 0.571, 0.3051, 0.97316, 0.0030205, 0.0030205, 0.0030205
|
145 |
+
143, 0.64953, 0.42091, 1.0545, 0.99244, 0.9881, 0.99405, 0.87332, 0.56671, 0.29446, 0.97472, 0.002971, 0.002971, 0.002971
|
146 |
+
144, 0.68473, 0.46444, 1.0665, 0.97974, 0.98214, 0.99237, 0.87312, 0.57174, 0.30902, 0.97303, 0.0029215, 0.0029215, 0.0029215
|
147 |
+
145, 0.70277, 0.45258, 1.0747, 0.98208, 0.9786, 0.99424, 0.87971, 0.54656, 0.29696, 0.95995, 0.002872, 0.002872, 0.002872
|
148 |
+
146, 0.68333, 0.45758, 1.0673, 0.99404, 0.99223, 0.99452, 0.88529, 0.533, 0.28648, 0.95956, 0.0028225, 0.0028225, 0.0028225
|
149 |
+
147, 0.71064, 0.46286, 1.0564, 0.98775, 1, 0.9937, 0.88921, 0.51365, 0.27904, 0.95668, 0.002773, 0.002773, 0.002773
|
150 |
+
148, 0.76209, 0.45591, 1.0609, 0.98234, 0.99337, 0.99274, 0.88596, 0.52462, 0.29906, 0.96282, 0.0027235, 0.0027235, 0.0027235
|
151 |
+
149, 0.70701, 0.45312, 1.1053, 0.98818, 0.99543, 0.99452, 0.8842, 0.54156, 0.28352, 0.96916, 0.002674, 0.002674, 0.002674
|
152 |
+
150, 0.68898, 0.43989, 1.0757, 0.97642, 0.98608, 0.99422, 0.88192, 0.53105, 0.27398, 0.95673, 0.0026245, 0.0026245, 0.0026245
|
153 |
+
151, 0.6902, 0.43554, 1.0913, 0.97743, 0.9881, 0.9944, 0.89176, 0.51724, 0.2738, 0.94231, 0.002575, 0.002575, 0.002575
|
154 |
+
152, 0.73663, 0.48571, 1.0851, 0.99953, 0.9881, 0.99488, 0.89907, 0.50077, 0.2781, 0.93408, 0.0025255, 0.0025255, 0.0025255
|
155 |
+
153, 0.6918, 0.42201, 1.0533, 0.99483, 0.9881, 0.99494, 0.90373, 0.48837, 0.26137, 0.92322, 0.002476, 0.002476, 0.002476
|
156 |
+
154, 0.673, 0.43663, 1.0969, 0.9992, 1, 0.995, 0.90298, 0.49982, 0.24875, 0.92147, 0.0024265, 0.0024265, 0.0024265
|
157 |
+
155, 0.6457, 0.42223, 1.0298, 1, 0.99915, 0.995, 0.90043, 0.49834, 0.25561, 0.91652, 0.002377, 0.002377, 0.002377
|
158 |
+
156, 0.64306, 0.38846, 1.0132, 0.99836, 0.99405, 0.995, 0.90807, 0.48486, 0.25385, 0.9097, 0.0023275, 0.0023275, 0.0023275
|
159 |
+
157, 0.61699, 0.38157, 1.0132, 0.9937, 0.99405, 0.995, 0.90836, 0.48092, 0.25489, 0.9097, 0.002278, 0.002278, 0.002278
|
160 |
+
158, 0.69093, 0.45027, 1.0726, 0.99765, 0.99405, 0.995, 0.90133, 0.49879, 0.25405, 0.91918, 0.0022285, 0.0022285, 0.0022285
|
161 |
+
159, 0.70194, 0.41535, 1.0336, 0.99547, 0.99405, 0.995, 0.9014, 0.49021, 0.25858, 0.92367, 0.002179, 0.002179, 0.002179
|
162 |
+
160, 0.67997, 0.41659, 1.0845, 0.99402, 0.98951, 0.99494, 0.90428, 0.50418, 0.26267, 0.9251, 0.0021295, 0.0021295, 0.0021295
|
163 |
+
161, 0.68094, 0.45192, 1.0978, 0.98822, 0.999, 0.99494, 0.90194, 0.50713, 0.25865, 0.92326, 0.00208, 0.00208, 0.00208
|
164 |
+
162, 0.69895, 0.4059, 1.0309, 0.98823, 0.99927, 0.99488, 0.9057, 0.48424, 0.26133, 0.9165, 0.0020305, 0.0020305, 0.0020305
|
165 |
+
163, 0.6496, 0.40798, 1.0388, 0.98184, 0.99405, 0.99482, 0.90293, 0.48749, 0.26272, 0.91837, 0.001981, 0.001981, 0.001981
|
166 |
+
164, 0.66698, 0.4162, 1.0453, 0.99282, 0.99405, 0.99488, 0.90531, 0.49389, 0.25371, 0.91597, 0.0019315, 0.0019315, 0.0019315
|
167 |
+
165, 0.69428, 0.42014, 1.052, 0.98823, 0.9998, 0.99488, 0.91246, 0.47157, 0.24816, 0.90333, 0.001882, 0.001882, 0.001882
|
168 |
+
166, 0.64313, 0.39615, 1.0255, 0.99405, 0.99405, 0.995, 0.91356, 0.47766, 0.25586, 0.9051, 0.0018325, 0.0018325, 0.0018325
|
169 |
+
167, 0.62439, 0.36769, 1.0353, 0.99351, 1, 0.995, 0.91771, 0.46882, 0.25565, 0.90218, 0.001783, 0.001783, 0.001783
|
170 |
+
168, 0.61536, 0.4267, 1.0236, 0.99346, 1, 0.99482, 0.91254, 0.46932, 0.25265, 0.90618, 0.0017335, 0.0017335, 0.0017335
|
171 |
+
169, 0.65995, 0.42102, 1.0465, 0.99349, 1, 0.99494, 0.92115, 0.4626, 0.24432, 0.89772, 0.001684, 0.001684, 0.001684
|
172 |
+
170, 0.62558, 0.3688, 1.0327, 0.99333, 1, 0.995, 0.9206, 0.47002, 0.24235, 0.89795, 0.0016345, 0.0016345, 0.0016345
|
173 |
+
171, 0.61334, 0.38145, 1.0501, 1, 0.99236, 0.995, 0.90836, 0.49494, 0.24963, 0.90629, 0.001585, 0.001585, 0.001585
|
174 |
+
172, 0.72697, 0.44984, 1.0761, 0.98823, 0.99963, 0.99488, 0.90995, 0.49467, 0.25364, 0.90395, 0.0015355, 0.0015355, 0.0015355
|
175 |
+
173, 0.6097, 0.39885, 1.0214, 0.98823, 0.99983, 0.99494, 0.91729, 0.47562, 0.24611, 0.89334, 0.001486, 0.001486, 0.001486
|
176 |
+
174, 0.65839, 0.41027, 1.0675, 0.99268, 0.99405, 0.99494, 0.91242, 0.47686, 0.2437, 0.89143, 0.0014365, 0.0014365, 0.0014365
|
177 |
+
175, 0.63005, 0.39564, 1.024, 1, 0.99991, 0.995, 0.9163, 0.47245, 0.2372, 0.88848, 0.001387, 0.001387, 0.001387
|
178 |
+
176, 0.6291, 0.3972, 1.0214, 0.99944, 1, 0.995, 0.91768, 0.46644, 0.23135, 0.8841, 0.0013375, 0.0013375, 0.0013375
|
179 |
+
177, 0.61317, 0.3865, 0.9925, 1, 0.99924, 0.995, 0.92299, 0.4551, 0.22935, 0.87907, 0.001288, 0.001288, 0.001288
|
180 |
+
178, 0.63697, 0.42949, 1.0433, 0.99662, 1, 0.995, 0.92585, 0.44769, 0.22458, 0.87608, 0.0012385, 0.0012385, 0.0012385
|
181 |
+
179, 0.63432, 0.38192, 1.0263, 1, 0.99931, 0.995, 0.9227, 0.44573, 0.21811, 0.87744, 0.001189, 0.001189, 0.001189
|
182 |
+
180, 0.55395, 0.35292, 0.97873, 0.99346, 1, 0.995, 0.92719, 0.43902, 0.21673, 0.87656, 0.0011395, 0.0011395, 0.0011395
|
183 |
+
181, 0.65471, 0.41178, 1.0532, 1, 0.99818, 0.995, 0.92809, 0.43273, 0.21605, 0.87381, 0.00109, 0.00109, 0.00109
|
184 |
+
182, 0.61235, 0.37446, 1.0006, 0.99953, 1, 0.995, 0.93375, 0.41778, 0.21042, 0.86637, 0.0010405, 0.0010405, 0.0010405
|
185 |
+
183, 0.59893, 0.37673, 1.0225, 0.99945, 1, 0.995, 0.93071, 0.41111, 0.21182, 0.86264, 0.000991, 0.000991, 0.000991
|
186 |
+
184, 0.56837, 0.34912, 0.97702, 0.99946, 1, 0.995, 0.93362, 0.41138, 0.20608, 0.86223, 0.0009415, 0.0009415, 0.0009415
|
187 |
+
185, 0.51854, 0.3464, 0.97001, 0.99945, 1, 0.995, 0.93667, 0.40861, 0.20194, 0.86181, 0.000892, 0.000892, 0.000892
|
188 |
+
186, 0.49208, 0.2793, 0.96243, 0.99949, 1, 0.995, 0.93363, 0.41863, 0.20423, 0.8657, 0.0008425, 0.0008425, 0.0008425
|
189 |
+
187, 0.4372, 0.26592, 0.95911, 0.99954, 1, 0.995, 0.9229, 0.46745, 0.21983, 0.88188, 0.000793, 0.000793, 0.000793
|
190 |
+
188, 0.46033, 0.26449, 0.94545, 0.99952, 1, 0.995, 0.92012, 0.47648, 0.22851, 0.88257, 0.0007435, 0.0007435, 0.0007435
|
191 |
+
189, 0.48038, 0.24543, 0.97632, 0.99904, 1, 0.995, 0.924, 0.46654, 0.23072, 0.87711, 0.000694, 0.000694, 0.000694
|
192 |
+
190, 0.43801, 0.24798, 0.96145, 0.99945, 1, 0.995, 0.92712, 0.45857, 0.23131, 0.875, 0.0006445, 0.0006445, 0.0006445
|
193 |
+
191, 0.43453, 0.2457, 0.97181, 0.99848, 1, 0.995, 0.93106, 0.44254, 0.22888, 0.87012, 0.000595, 0.000595, 0.000595
|
194 |
+
192, 0.46837, 0.25121, 0.967, 0.99862, 1, 0.995, 0.93053, 0.44427, 0.22809, 0.87159, 0.0005455, 0.0005455, 0.0005455
|
195 |
+
193, 0.42758, 0.2388, 0.91999, 0.99843, 1, 0.995, 0.93186, 0.4395, 0.22472, 0.87065, 0.000496, 0.000496, 0.000496
|
196 |
+
194, 0.41679, 0.23474, 0.94206, 1, 0.99865, 0.995, 0.932, 0.43384, 0.21963, 0.86837, 0.0004465, 0.0004465, 0.0004465
|
197 |
+
195, 0.42467, 0.22253, 0.91644, 1, 0.99917, 0.995, 0.93444, 0.43383, 0.21841, 0.86767, 0.000397, 0.000397, 0.000397
|
198 |
+
196, 0.43916, 0.24326, 0.9052, 0.99352, 1, 0.995, 0.93864, 0.42594, 0.21587, 0.86501, 0.0003475, 0.0003475, 0.0003475
|
199 |
+
197, 0.41322, 0.22604, 0.88654, 0.99355, 1, 0.995, 0.94054, 0.41684, 0.21245, 0.86143, 0.000298, 0.000298, 0.000298
|
200 |
+
198, 0.39193, 0.22272, 0.92057, 0.99356, 1, 0.995, 0.93989, 0.41485, 0.20855, 0.86022, 0.0002485, 0.0002485, 0.0002485
|
201 |
+
199, 0.41516, 0.23826, 0.92339, 0.99352, 1, 0.995, 0.93987, 0.413, 0.20732, 0.85909, 0.000199, 0.000199, 0.000199
|
runs/train/exp17/results.png
ADDED
![]() |
runs/train/exp17/weights/best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:523cd2b66d3fd4a356d3081fbdb4c9d48177de631ce767d9e4fd3df7f8b6159a
|
3 |
+
size 3670016
|
runs/train/exp17/weights/best_striped.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6abff1c0c77690bd006c895715bb8c46876c9f6603daaf73239bb010e79b08cd
|
3 |
+
size 3670016
|
runs/train/exp17/weights/last.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26d8fc5e1fe11656cfe3d8bc76f7722acebaae633383c8055c00f67428d10e59
|
3 |
+
size 3670016
|
runs/train/exp17/weights/last_striped.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b041e043621a997d3bbf052bd52da5e7e1052f28f9f1fc5f84aa76fc3a123e4
|
3 |
+
size 3670016
|