import gradio as gr import tensorflow as tf from tensorflow.keras.preprocessing import image import numpy as np from PIL import Image from keras import layers # Load your trained Xception model model = tf.keras.models.load_model("inception_acc_0.989001-_val_acc_0.98252.h5") # Define the labels for your classification class_labels = ['arm', 'hand', 'foot', 'legs','fullbody','head','backside', 'torso', 'stake', 'plastic'] # Replace with your actual class names def classify_image(img): # Preprocess the image to fit the model input shape img = img.resize((299, 299)) # Xception takes 299x299 input size img = np.array(img) / 255.0 # Normalize the image img = np.expand_dims(img, axis=0) # Make prediction predictions = model.predict(img) predicted_class = np.argmax(predictions, axis=1)[0] confidence = np.max(predictions) return {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}, confidence # Example images (local paths or URLs) example_images = [ 'head.jpg', # Replace with actual local file paths or URLs 'torso.jpg' ] # Gradio interface demo = gr.Interface( fn=classify_image, title="Human Bodypart Image Classification", description = "Predict the bodypart of human bodypart images. This is a demo of our human bodypart image classifier.", inputs=gr.Image(type="pil"), outputs=[gr.Label(num_top_classes=len(class_labels)), gr.Number()], examples=example_images, cache_examples=False, live=True, ) if __name__ == "__main__": demo.launch()