import gradio as gr import numpy as np from PIL import Image import requests import xgboost import hopsworks import joblib project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("titanic_modal", version=1) model_dir = model.download() model = joblib.load(model_dir + "/titanic_model.pkl") def titanic(pclass, sex, age, sibs, par_ch, fare, deck, embarked): input_list = [] input_list.append(pclass) input_list.append(sex) input_list.append(age) input_list.append(sibs) input_list.append(par_ch) input_list.append(fare) input_list.append(deck) input_list.append(embarked) # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list).reshape(1, -1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. return res[0] demo = gr.Interface( fn=titanic, title="Titanic Survival Predictive Analytics", description="Experiment with passenger class, sex, age, siblings, parents/children, fare, deck, and embarked to predict if a hypothetical passenger survived titanic.", allow_flagging="never", inputs=[ gr.inputs.Number(default=0.0, label="Passenger class"), gr.inputs.Number(default=0.0, label="Sex"), gr.inputs.Number(default=0.0, label="Age"), gr.inputs.Number(default=0.0, label="Siblings"), gr.inputs.Number(default=0.0, label="Parents/Children"), gr.inputs.Number(default=0.0, label="Fare"), gr.inputs.Number(default=0.0, label="Deck"), gr.inputs.Number(default=0.0, label="Embarked"), ], outputs=gr.inputs.Number(label="Survived")) demo.launch()