sadickam commited on
Commit
78bab84
·
verified ·
1 Parent(s): 14cf178

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -8,7 +8,6 @@ from nltk.tokenize import sent_tokenize
8
  import plotly.express as px
9
  import time
10
  import tqdm
11
-
12
  nltk.download('punkt')
13
 
14
  # Define the device (GPU or CPU)
@@ -22,11 +21,10 @@ model = AutoModelForSequenceClassification.from_pretrained(checkpoint).to(device
22
 
23
  # Define the function for preprocessing text
24
  def prep_text(text):
25
- clean_sents = [] # append clean con sentences
26
- sent_tokens = str(text).split('.')
27
  for sent_token in sent_tokens:
28
  word_tokens = [str(word_token).strip().lower() for word_token in sent_token.split()]
29
- word_tokens = [word_token for word_token in word_tokens if word_token not in punctuations]
30
  clean_sents.append(' '.join((word_tokens)))
31
  joined_clean_sents = '. '.join(clean_sents).strip(' ')
32
  return joined_clean_sents
@@ -45,7 +43,7 @@ def app_info():
45
  iface1 = gr.Interface(
46
  fn=app_info, inputs=None, outputs=['text'], title="General-Infomation",
47
  description='''
48
- This app, powered by the IEQ-BERT model (ieq/IEQ-BERT), is for automating the classification of text with respect
49
  to indoor environmental quality (IEQ). IEQ refers to the quality of the indoor air, lighting,
50
  temperature, and acoustics within a building, as well as the overall comfort and well-being of its occupants. It encompasses various
51
  factors that can impact the health, productivity, and satisfaction of people who spend time indoors, such as office workers, students,
 
8
  import plotly.express as px
9
  import time
10
  import tqdm
 
11
  nltk.download('punkt')
12
 
13
  # Define the device (GPU or CPU)
 
21
 
22
  # Define the function for preprocessing text
23
  def prep_text(text):
24
+ clean_sents = []
25
+ sent_tokens = sent_tokenize(str(text))
26
  for sent_token in sent_tokens:
27
  word_tokens = [str(word_token).strip().lower() for word_token in sent_token.split()]
 
28
  clean_sents.append(' '.join((word_tokens)))
29
  joined_clean_sents = '. '.join(clean_sents).strip(' ')
30
  return joined_clean_sents
 
43
  iface1 = gr.Interface(
44
  fn=app_info, inputs=None, outputs=['text'], title="General-Infomation",
45
  description='''
46
+ This app, powered by the IEQ-BERT model, is for automating the classification of text with respect
47
  to indoor environmental quality (IEQ). IEQ refers to the quality of the indoor air, lighting,
48
  temperature, and acoustics within a building, as well as the overall comfort and well-being of its occupants. It encompasses various
49
  factors that can impact the health, productivity, and satisfaction of people who spend time indoors, such as office workers, students,