Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -129,7 +129,7 @@ def predict_single_text(text):
|
|
129 |
predicted_prob = [round(a_, 3) for a_ in probabilities.cpu().numpy().tolist() if a_ > threshold]
|
130 |
|
131 |
# Create a dictionary containing the top predicted IEQ labels and their corresponding probabilities
|
132 |
-
top_prediction =
|
133 |
|
134 |
# Create a bar chart showing the likelihood of each IEQ label
|
135 |
# Make dataframe for plotly bar chart
|
@@ -141,7 +141,7 @@ def predict_single_text(text):
|
|
141 |
df2['Likelihood'] = n
|
142 |
|
143 |
# plot graph of predictions
|
144 |
-
fig = px.bar(df2, x="Likelihood", y="IEQ", orientation="
|
145 |
|
146 |
fig.update_layout(
|
147 |
# barmode='stack',
|
@@ -160,9 +160,7 @@ def predict_single_text(text):
|
|
160 |
|
161 |
return top_prediction, fig
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
iface2 = gr.Interface(fn=predict_single_text,
|
167 |
inputs=gr.Textbox(lines=7, label="Paste or type text here"),
|
168 |
outputs=[gr.Label(label="Top Prediction", show_label=True),
|
@@ -333,22 +331,22 @@ def predict_from_csv(file, column_name, progress=gr.Progress()):
|
|
333 |
# Create a downloadable CSV file
|
334 |
output_csv = gr.File(value='IEQ_predictions.csv', visible=True)
|
335 |
|
336 |
-
# Create a histogram showing the frequency of each IEQ label
|
337 |
-
fig = px.histogram(df_docs, y="IEQ_predicted")
|
338 |
-
fig.update_layout(
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
)
|
347 |
-
fig.update_xaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=12))
|
348 |
-
fig.update_yaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=12))
|
349 |
-
fig.update_annotations(font_size=12)
|
350 |
|
351 |
-
return
|
352 |
|
353 |
|
354 |
# Define the input component
|
@@ -358,8 +356,7 @@ column_name_input = gr.Textbox(label="Enter the column name containing the text
|
|
358 |
# Create the Gradio interface
|
359 |
iface3 = gr.Interface(fn=predict_from_csv,
|
360 |
inputs=[file_input, column_name_input],
|
361 |
-
outputs=[gr.
|
362 |
-
gr.File(label='Download output CSV', show_label=True)],
|
363 |
title="Multi-text Prediction",
|
364 |
description='**NOTE:** Please enter the column name containing the text to be analyzed.')
|
365 |
|
|
|
129 |
predicted_prob = [round(a_, 3) for a_ in probabilities.cpu().numpy().tolist() if a_ > threshold]
|
130 |
|
131 |
# Create a dictionary containing the top predicted IEQ labels and their corresponding probabilities
|
132 |
+
top_prediction = predicted_labels
|
133 |
|
134 |
# Create a bar chart showing the likelihood of each IEQ label
|
135 |
# Make dataframe for plotly bar chart
|
|
|
141 |
df2['Likelihood'] = n
|
142 |
|
143 |
# plot graph of predictions
|
144 |
+
fig = px.bar(df2, x="Likelihood", y="IEQ", orientation="v")
|
145 |
|
146 |
fig.update_layout(
|
147 |
# barmode='stack',
|
|
|
160 |
|
161 |
return top_prediction, fig
|
162 |
|
163 |
+
# Create Gradio interface for single text
|
|
|
|
|
164 |
iface2 = gr.Interface(fn=predict_single_text,
|
165 |
inputs=gr.Textbox(lines=7, label="Paste or type text here"),
|
166 |
outputs=[gr.Label(label="Top Prediction", show_label=True),
|
|
|
331 |
# Create a downloadable CSV file
|
332 |
output_csv = gr.File(value='IEQ_predictions.csv', visible=True)
|
333 |
|
334 |
+
# # Create a histogram showing the frequency of each IEQ label
|
335 |
+
# fig = px.histogram(df_docs, y="IEQ_predicted")
|
336 |
+
# fig.update_layout(
|
337 |
+
# template='seaborn',
|
338 |
+
# font=dict(family="Arial", size=12, color="black"),
|
339 |
+
# autosize=True,
|
340 |
+
# # width=800,
|
341 |
+
# # height=500,
|
342 |
+
# xaxis_title="IEQ counts",
|
343 |
+
# yaxis_title="Indoor environmental quality (IEQ)",
|
344 |
+
# )
|
345 |
+
# fig.update_xaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=12))
|
346 |
+
# fig.update_yaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=12))
|
347 |
+
# fig.update_annotations(font_size=12)
|
348 |
|
349 |
+
return output_csv, #fig
|
350 |
|
351 |
|
352 |
# Define the input component
|
|
|
356 |
# Create the Gradio interface
|
357 |
iface3 = gr.Interface(fn=predict_from_csv,
|
358 |
inputs=[file_input, column_name_input],
|
359 |
+
outputs=[gr.File(label='Download output CSV', show_label=True)],
|
|
|
360 |
title="Multi-text Prediction",
|
361 |
description='**NOTE:** Please enter the column name containing the text to be analyzed.')
|
362 |
|