sadickam commited on
Commit
d158fe3
·
verified ·
1 Parent(s): 3129827

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -3
app.py CHANGED
@@ -12,11 +12,11 @@ import tqdm
12
  nltk.download('punkt')
13
 
14
  # Define the device (GPU or CPU)
15
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
16
 
17
  # Define the model and tokenizer
18
  checkpoint = "ieq/IEQ-BERT"
19
- tokenizer = AutoTokenizer.from_pretrained(checkpoint).to(device)
20
  model = AutoModelForSequenceClassification.from_pretrained(checkpoint).to(device)
21
 
22
 
@@ -212,6 +212,18 @@ def predict_from_csv(file, column_name, progress=gr.Progress()):
212
  labels_predicted = []
213
  prediction_scores = []
214
 
 
 
 
 
 
 
 
 
 
 
 
 
215
  # Preprocess text and make predictions
216
  for text_input in progress.tqdm(text_list, desc="Analysing data"):
217
  # Sleep to avoid rate limiting
@@ -248,9 +260,69 @@ def predict_from_csv(file, column_name, progress=gr.Progress()):
248
  labels_predicted.append(predicted_labels)
249
  prediction_scores.append(prediction_score)
250
 
251
- # Append the predictions to the DataFrame
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
  df_docs['IEQ_predicted'] = labels_predicted
253
  df_docs['prediction_scores'] = prediction_scores
 
 
 
 
 
 
 
 
 
 
254
 
255
  # Save the predictions to a CSV file
256
  df_docs.to_csv('IEQ_predictions.csv')
 
12
  nltk.download('punkt')
13
 
14
  # Define the device (GPU or CPU)
15
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
16
 
17
  # Define the model and tokenizer
18
  checkpoint = "ieq/IEQ-BERT"
19
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
20
  model = AutoModelForSequenceClassification.from_pretrained(checkpoint).to(device)
21
 
22
 
 
212
  labels_predicted = []
213
  prediction_scores = []
214
 
215
+ # Initialize empty lists for IEQ labels and scores
216
+ ieq1 = []
217
+ ieq2 = []
218
+ ieq3 = []
219
+ ieq4 = []
220
+ ieq5 = []
221
+ score1 = []
222
+ score2 = []
223
+ score3 = []
224
+ score4 = []
225
+ score5 = []
226
+
227
  # Preprocess text and make predictions
228
  for text_input in progress.tqdm(text_list, desc="Analysing data"):
229
  # Sleep to avoid rate limiting
 
260
  labels_predicted.append(predicted_labels)
261
  prediction_scores.append(prediction_score)
262
 
263
+ # Append to ieq1 to ieq5
264
+ for i in range(5):
265
+ if i < len(predicted_labels):
266
+ if i == 0:
267
+ ieq1.append(predicted_labels[i])
268
+ elif i == 1:
269
+ ieq2.append(predicted_labels[i])
270
+ elif i == 2:
271
+ ieq3.append(predicted_labels[i])
272
+ elif i == 3:
273
+ ieq4.append(predicted_labels[i])
274
+ elif i == 4:
275
+ ieq5.append(predicted_labels[i])
276
+ else:
277
+ if i == 0:
278
+ ieq1.append("-")
279
+ elif i == 1:
280
+ ieq2.append("-")
281
+ elif i == 2:
282
+ ieq3.append("-")
283
+ elif i == 3:
284
+ ieq4.append("-")
285
+ elif i == 4:
286
+ ieq5.append("-")
287
+
288
+ # Append to score1 to score5
289
+ for i in range(5):
290
+ if i < len(prediction_score):
291
+ if i == 0:
292
+ score1.append(prediction_score[i])
293
+ elif i == 1:
294
+ score2.append(prediction_score[i])
295
+ elif i == 2:
296
+ score3.append(prediction_score[i])
297
+ elif i == 3:
298
+ score4.append(prediction_score[i])
299
+ elif i == 4:
300
+ score5.append(prediction_score[i])
301
+ else:
302
+ if i == 0:
303
+ score1.append("-")
304
+ elif i == 1:
305
+ score2.append("-")
306
+ elif i == 2:
307
+ score3.append("-")
308
+ elif i == 3:
309
+ score4.append("-")
310
+ elif i == 4:
311
+ score5.append("-")
312
+
313
+ # Append the predictions to the DataFrame
314
  df_docs['IEQ_predicted'] = labels_predicted
315
  df_docs['prediction_scores'] = prediction_scores
316
+ df_docs['IEQ1'] = ieq1
317
+ df_docs['IEQ2'] = ieq2
318
+ df_docs['IEQ3'] = ieq3
319
+ df_docs['IEQ4'] = ieq4
320
+ df_docs['IEQ5'] = ieq5
321
+ df_docs['Score1'] = score1
322
+ df_docs['Score2'] = score2
323
+ df_docs['Score3'] = score3
324
+ df_docs['Score4'] = score4
325
+ df_docs['Score5'] = score5
326
 
327
  # Save the predictions to a CSV file
328
  df_docs.to_csv('IEQ_predictions.csv')