File size: 1,893 Bytes
db6a3b7
 
 
 
 
 
 
 
 
 
 
a6bbecf
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
 
 
db6a3b7
a6bbecf
 
 
 
 
 
 
 
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
 
 
db6a3b7
a6bbecf
 
 
 
 
 
db6a3b7
a6bbecf
 
 
db6a3b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch


def pixel_shuffle_3d(x: torch.Tensor, scale_factor: int) -> torch.Tensor:
    """
    3D pixel shuffle.
    """
    B, C, H, W, D = x.shape
    C_ = C // scale_factor**3
    x = x.reshape(B, C_, scale_factor, scale_factor, scale_factor, H, W, D)
    x = x.permute(0, 1, 5, 2, 6, 3, 7, 4)
    x = x.reshape(B, C_, H * scale_factor, W * scale_factor, D * scale_factor)
    return x


def patchify(x: torch.Tensor, patch_size: int):
    """
    Patchify a tensor.

    Args:
        x (torch.Tensor): (N, C, *spatial) tensor
        patch_size (int): Patch size
    """
    DIM = x.dim() - 2
    for d in range(2, DIM + 2):
        assert (
            x.shape[d] % patch_size == 0
        ), f"Dimension {d} of input tensor must be divisible by patch size, got {x.shape[d]} and {patch_size}"

    x = x.reshape(
        *x.shape[:2],
        *sum([[x.shape[d] // patch_size, patch_size] for d in range(2, DIM + 2)], []),
    )
    x = x.permute(
        0, 1, *([2 * i + 3 for i in range(DIM)] + [2 * i + 2 for i in range(DIM)])
    )
    x = x.reshape(x.shape[0], x.shape[1] * (patch_size**DIM), *(x.shape[-DIM:]))
    return x


def unpatchify(x: torch.Tensor, patch_size: int):
    """
    Unpatchify a tensor.

    Args:
        x (torch.Tensor): (N, C, *spatial) tensor
        patch_size (int): Patch size
    """
    DIM = x.dim() - 2
    assert (
        x.shape[1] % (patch_size**DIM) == 0
    ), f"Second dimension of input tensor must be divisible by patch size to unpatchify, got {x.shape[1]} and {patch_size ** DIM}"

    x = x.reshape(
        x.shape[0],
        x.shape[1] // (patch_size**DIM),
        *([patch_size] * DIM),
        *(x.shape[-DIM:]),
    )
    x = x.permute(0, 1, *(sum([[2 + DIM + i, 2 + i] for i in range(DIM)], [])))
    x = x.reshape(
        x.shape[0], x.shape[1], *[x.shape[2 + 2 * i] * patch_size for i in range(DIM)]
    )
    return x