File size: 12,666 Bytes
db6a3b7
 
 
 
 
 
 
 
 
 
 
a6bbecf
 
 
 
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
db6a3b7
 
a6bbecf
db6a3b7
 
 
a6bbecf
 
 
 
 
 
 
 
 
 
 
db6a3b7
a6bbecf
 
db6a3b7
 
 
a6bbecf
 
 
 
 
 
 
 
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
 
 
 
 
 
 
db6a3b7
a6bbecf
 
 
 
db6a3b7
 
 
a6bbecf
 
 
 
 
 
 
db6a3b7
a6bbecf
 
 
db6a3b7
a6bbecf
 
 
db6a3b7
 
a6bbecf
 
 
 
 
 
 
 
 
 
db6a3b7
a6bbecf
 
 
 
db6a3b7
a6bbecf
 
 
db6a3b7
 
a6bbecf
 
 
 
 
 
 
 
 
db6a3b7
a6bbecf
 
 
 
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
 
 
db6a3b7
 
 
a6bbecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6a3b7
 
 
a6bbecf
db6a3b7
a6bbecf
 
 
 
 
 
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
db6a3b7
 
a6bbecf
 
 
db6a3b7
a6bbecf
 
 
 
 
 
 
 
 
 
db6a3b7
a6bbecf
 
db6a3b7
a6bbecf
 
db6a3b7
 
 
 
a6bbecf
 
 
db6a3b7
 
 
a6bbecf
 
 
 
 
 
 
 
 
 
 
 
 
 
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6a3b7
 
a6bbecf
 
 
 
 
 
 
 
 
 
 
db6a3b7
 
a6bbecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6a3b7
a6bbecf
 
 
 
 
 
 
 
 
db6a3b7
a6bbecf
 
 
db6a3b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import numpy as np
import torch
import torch.nn.functional as F
import math
import cv2
from scipy.stats import qmc
from easydict import EasyDict as edict
from ..representations.octree import DfsOctree


def intrinsics_to_projection(
    intrinsics: torch.Tensor,
    near: float,
    far: float,
) -> torch.Tensor:
    """
    OpenCV intrinsics to OpenGL perspective matrix

    Args:
        intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
        near (float): near plane to clip
        far (float): far plane to clip
    Returns:
        (torch.Tensor): [4, 4] OpenGL perspective matrix
    """
    fx, fy = intrinsics[0, 0], intrinsics[1, 1]
    cx, cy = intrinsics[0, 2], intrinsics[1, 2]
    ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
    ret[0, 0] = 2 * fx
    ret[1, 1] = 2 * fy
    ret[0, 2] = 2 * cx - 1
    ret[1, 2] = -2 * cy + 1
    ret[2, 2] = far / (far - near)
    ret[2, 3] = near * far / (near - far)
    ret[3, 2] = 1.0
    return ret


def render(
    viewpoint_camera,
    octree: DfsOctree,
    pipe,
    bg_color: torch.Tensor,
    scaling_modifier=1.0,
    used_rank=None,
    colors_overwrite=None,
    aux=None,
    halton_sampler=None,
):
    """
    Render the scene.

    Background tensor (bg_color) must be on GPU!
    """
    # lazy import
    if "OctreeTrivecRasterizer" not in globals():
        from diffoctreerast import (
            OctreeVoxelRasterizer,
            OctreeGaussianRasterizer,
            OctreeTrivecRasterizer,
            OctreeDecoupolyRasterizer,
        )

    # Set up rasterization configuration
    tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
    tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)

    raster_settings = edict(
        image_height=int(viewpoint_camera.image_height),
        image_width=int(viewpoint_camera.image_width),
        tanfovx=tanfovx,
        tanfovy=tanfovy,
        bg=bg_color,
        scale_modifier=scaling_modifier,
        viewmatrix=viewpoint_camera.world_view_transform,
        projmatrix=viewpoint_camera.full_proj_transform,
        sh_degree=octree.active_sh_degree,
        campos=viewpoint_camera.camera_center,
        with_distloss=pipe.with_distloss,
        jitter=pipe.jitter,
        debug=pipe.debug,
    )

    positions = octree.get_xyz
    if octree.primitive == "voxel":
        densities = octree.get_density
    elif octree.primitive == "gaussian":
        opacities = octree.get_opacity
    elif octree.primitive == "trivec":
        trivecs = octree.get_trivec
        densities = octree.get_density
        raster_settings.density_shift = octree.density_shift
    elif octree.primitive == "decoupoly":
        decoupolys_V, decoupolys_g = octree.get_decoupoly
        densities = octree.get_density
        raster_settings.density_shift = octree.density_shift
    else:
        raise ValueError(f"Unknown primitive {octree.primitive}")
    depths = octree.get_depth

    # If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
    # from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
    colors_precomp = None
    shs = octree.get_features
    if octree.primitive in ["voxel", "gaussian"] and colors_overwrite is not None:
        colors_precomp = colors_overwrite
        shs = None

    ret = edict()

    if octree.primitive == "voxel":
        renderer = OctreeVoxelRasterizer(raster_settings=raster_settings)
        rgb, depth, alpha, distloss = renderer(
            positions=positions,
            densities=densities,
            shs=shs,
            colors_precomp=colors_precomp,
            depths=depths,
            aabb=octree.aabb,
            aux=aux,
        )
        ret["rgb"] = rgb
        ret["depth"] = depth
        ret["alpha"] = alpha
        ret["distloss"] = distloss
    elif octree.primitive == "gaussian":
        renderer = OctreeGaussianRasterizer(raster_settings=raster_settings)
        rgb, depth, alpha = renderer(
            positions=positions,
            opacities=opacities,
            shs=shs,
            colors_precomp=colors_precomp,
            depths=depths,
            aabb=octree.aabb,
            aux=aux,
        )
        ret["rgb"] = rgb
        ret["depth"] = depth
        ret["alpha"] = alpha
    elif octree.primitive == "trivec":
        raster_settings.used_rank = (
            used_rank if used_rank is not None else trivecs.shape[1]
        )
        renderer = OctreeTrivecRasterizer(raster_settings=raster_settings)
        rgb, depth, alpha, percent_depth = renderer(
            positions=positions,
            trivecs=trivecs,
            densities=densities,
            shs=shs,
            colors_precomp=colors_precomp,
            colors_overwrite=colors_overwrite,
            depths=depths,
            aabb=octree.aabb,
            aux=aux,
            halton_sampler=halton_sampler,
        )
        ret["percent_depth"] = percent_depth
        ret["rgb"] = rgb
        ret["depth"] = depth
        ret["alpha"] = alpha
    elif octree.primitive == "decoupoly":
        raster_settings.used_rank = (
            used_rank if used_rank is not None else decoupolys_V.shape[1]
        )
        renderer = OctreeDecoupolyRasterizer(raster_settings=raster_settings)
        rgb, depth, alpha = renderer(
            positions=positions,
            decoupolys_V=decoupolys_V,
            decoupolys_g=decoupolys_g,
            densities=densities,
            shs=shs,
            colors_precomp=colors_precomp,
            depths=depths,
            aabb=octree.aabb,
            aux=aux,
        )
        ret["rgb"] = rgb
        ret["depth"] = depth
        ret["alpha"] = alpha

    return ret


class OctreeRenderer:
    """
    Renderer for the Voxel representation.

    Args:
        rendering_options (dict): Rendering options.
    """

    def __init__(self, rendering_options={}) -> None:
        try:
            import diffoctreerast
        except ImportError:
            print(
                "\033[93m[WARNING] diffoctreerast is not installed. The renderer will be disabled.\033[0m"
            )
            self.unsupported = True
        else:
            self.unsupported = False

        self.pipe = edict(
            {
                "with_distloss": False,
                "with_aux": False,
                "scale_modifier": 1.0,
                "used_rank": None,
                "jitter": False,
                "debug": False,
            }
        )
        self.rendering_options = edict(
            {
                "resolution": None,
                "near": None,
                "far": None,
                "ssaa": 1,
                "bg_color": "random",
            }
        )
        self.halton_sampler = qmc.Halton(2, scramble=False)
        self.rendering_options.update(rendering_options)
        self.bg_color = None

    def render(
        self,
        octree: DfsOctree,
        extrinsics: torch.Tensor,
        intrinsics: torch.Tensor,
        colors_overwrite: torch.Tensor = None,
    ) -> edict:
        """
        Render the octree.

        Args:
            octree (Octree): octree
            extrinsics (torch.Tensor): (4, 4) camera extrinsics
            intrinsics (torch.Tensor): (3, 3) camera intrinsics
            colors_overwrite (torch.Tensor): (N, 3) override color

        Returns:
            edict containing:
                color (torch.Tensor): (3, H, W) rendered color
                depth (torch.Tensor): (H, W) rendered depth
                alpha (torch.Tensor): (H, W) rendered alpha
                distloss (Optional[torch.Tensor]): (H, W) rendered distance loss
                percent_depth (Optional[torch.Tensor]): (H, W) rendered percent depth
                aux (Optional[edict]): auxiliary tensors
        """
        resolution = self.rendering_options["resolution"]
        near = self.rendering_options["near"]
        far = self.rendering_options["far"]
        ssaa = self.rendering_options["ssaa"]

        if self.unsupported:
            image = np.zeros((512, 512, 3), dtype=np.uint8)
            text_bbox = cv2.getTextSize("Unsupported", cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[
                0
            ]
            origin = (512 - text_bbox[0]) // 2, (512 - text_bbox[1]) // 2
            image = cv2.putText(
                image,
                "Unsupported",
                origin,
                cv2.FONT_HERSHEY_SIMPLEX,
                2,
                (255, 255, 255),
                3,
                cv2.LINE_AA,
            )
            return {
                "color": torch.tensor(image, dtype=torch.float32).permute(2, 0, 1)
                / 255,
            }

        if self.rendering_options["bg_color"] == "random":
            self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
            if np.random.rand() < 0.5:
                self.bg_color += 1
        else:
            self.bg_color = torch.tensor(
                self.rendering_options["bg_color"], dtype=torch.float32, device="cuda"
            )

        if self.pipe["with_aux"]:
            aux = {
                "grad_color2": torch.zeros(
                    (octree.num_leaf_nodes, 3),
                    dtype=torch.float32,
                    requires_grad=True,
                    device="cuda",
                )
                + 0,
                "contributions": torch.zeros(
                    (octree.num_leaf_nodes, 1),
                    dtype=torch.float32,
                    requires_grad=True,
                    device="cuda",
                )
                + 0,
            }
            for k in aux.keys():
                aux[k].requires_grad_()
                aux[k].retain_grad()
        else:
            aux = None

        view = extrinsics
        perspective = intrinsics_to_projection(intrinsics, near, far)
        camera = torch.inverse(view)[:3, 3]
        focalx = intrinsics[0, 0]
        focaly = intrinsics[1, 1]
        fovx = 2 * torch.atan(0.5 / focalx)
        fovy = 2 * torch.atan(0.5 / focaly)

        camera_dict = edict(
            {
                "image_height": resolution * ssaa,
                "image_width": resolution * ssaa,
                "FoVx": fovx,
                "FoVy": fovy,
                "znear": near,
                "zfar": far,
                "world_view_transform": view.T.contiguous(),
                "projection_matrix": perspective.T.contiguous(),
                "full_proj_transform": (perspective @ view).T.contiguous(),
                "camera_center": camera,
            }
        )

        # Render
        render_ret = render(
            camera_dict,
            octree,
            self.pipe,
            self.bg_color,
            aux=aux,
            colors_overwrite=colors_overwrite,
            scaling_modifier=self.pipe.scale_modifier,
            used_rank=self.pipe.used_rank,
            halton_sampler=self.halton_sampler,
        )

        if ssaa > 1:
            render_ret.rgb = F.interpolate(
                render_ret.rgb[None],
                size=(resolution, resolution),
                mode="bilinear",
                align_corners=False,
                antialias=True,
            ).squeeze()
            render_ret.depth = F.interpolate(
                render_ret.depth[None, None],
                size=(resolution, resolution),
                mode="bilinear",
                align_corners=False,
                antialias=True,
            ).squeeze()
            render_ret.alpha = F.interpolate(
                render_ret.alpha[None, None],
                size=(resolution, resolution),
                mode="bilinear",
                align_corners=False,
                antialias=True,
            ).squeeze()
            if hasattr(render_ret, "percent_depth"):
                render_ret.percent_depth = F.interpolate(
                    render_ret.percent_depth[None, None],
                    size=(resolution, resolution),
                    mode="bilinear",
                    align_corners=False,
                    antialias=True,
                ).squeeze()

        ret = edict(
            {
                "color": render_ret.rgb,
                "depth": render_ret.depth,
                "alpha": render_ret.alpha,
            }
        )
        if self.pipe["with_distloss"] and "distloss" in render_ret:
            ret["distloss"] = render_ret.distloss
        if self.pipe["with_aux"]:
            ret["aux"] = aux
        if hasattr(render_ret, "percent_depth"):
            ret["percent_depth"] = render_ret.percent_depth
        return ret