import numpy as np import cv2 import torch # Dictionary utils def _dict_merge(dicta, dictb, prefix=""): """ Merge two dictionaries. """ assert isinstance(dicta, dict), "input must be a dictionary" assert isinstance(dictb, dict), "input must be a dictionary" dict_ = {} all_keys = set(dicta.keys()).union(set(dictb.keys())) for key in all_keys: if key in dicta.keys() and key in dictb.keys(): if isinstance(dicta[key], dict) and isinstance(dictb[key], dict): dict_[key] = _dict_merge( dicta[key], dictb[key], prefix=f"{prefix}.{key}" ) else: raise ValueError( f"Duplicate key {prefix}.{key} found in both dictionaries. Types: {type(dicta[key])}, {type(dictb[key])}" ) elif key in dicta.keys(): dict_[key] = dicta[key] else: dict_[key] = dictb[key] return dict_ def dict_merge(dicta, dictb): """ Merge two dictionaries. """ return _dict_merge(dicta, dictb, prefix="") def dict_foreach(dic, func, special_func={}): """ Recursively apply a function to all non-dictionary leaf values in a dictionary. """ assert isinstance(dic, dict), "input must be a dictionary" for key in dic.keys(): if isinstance(dic[key], dict): dic[key] = dict_foreach(dic[key], func) else: if key in special_func.keys(): dic[key] = special_func[key](dic[key]) else: dic[key] = func(dic[key]) return dic def dict_reduce(dicts, func, special_func={}): """ Reduce a list of dictionaries. Leaf values must be scalars. """ assert isinstance(dicts, list), "input must be a list of dictionaries" assert all( [isinstance(d, dict) for d in dicts] ), "input must be a list of dictionaries" assert len(dicts) > 0, "input must be a non-empty list of dictionaries" all_keys = set([key for dict_ in dicts for key in dict_.keys()]) reduced_dict = {} for key in all_keys: vlist = [dict_[key] for dict_ in dicts if key in dict_.keys()] if isinstance(vlist[0], dict): reduced_dict[key] = dict_reduce(vlist, func, special_func) else: if key in special_func.keys(): reduced_dict[key] = special_func[key](vlist) else: reduced_dict[key] = func(vlist) return reduced_dict def dict_any(dic, func): """ Recursively apply a function to all non-dictionary leaf values in a dictionary. """ assert isinstance(dic, dict), "input must be a dictionary" for key in dic.keys(): if isinstance(dic[key], dict): if dict_any(dic[key], func): return True else: if func(dic[key]): return True return False def dict_all(dic, func): """ Recursively apply a function to all non-dictionary leaf values in a dictionary. """ assert isinstance(dic, dict), "input must be a dictionary" for key in dic.keys(): if isinstance(dic[key], dict): if not dict_all(dic[key], func): return False else: if not func(dic[key]): return False return True def dict_flatten(dic, sep="."): """ Flatten a nested dictionary into a dictionary with no nested dictionaries. """ assert isinstance(dic, dict), "input must be a dictionary" flat_dict = {} for key in dic.keys(): if isinstance(dic[key], dict): sub_dict = dict_flatten(dic[key], sep=sep) for sub_key in sub_dict.keys(): flat_dict[str(key) + sep + str(sub_key)] = sub_dict[sub_key] else: flat_dict[key] = dic[key] return flat_dict def make_grid(images, nrow=None, ncol=None, aspect_ratio=None): num_images = len(images) if nrow is None and ncol is None: if aspect_ratio is not None: nrow = int(np.round(np.sqrt(num_images / aspect_ratio))) else: nrow = int(np.sqrt(num_images)) ncol = (num_images + nrow - 1) // nrow elif nrow is None and ncol is not None: nrow = (num_images + ncol - 1) // ncol elif nrow is not None and ncol is None: ncol = (num_images + nrow - 1) // nrow else: assert ( nrow * ncol >= num_images ), "nrow * ncol must be greater than or equal to the number of images" grid = np.zeros( (nrow * images[0].shape[0], ncol * images[0].shape[1], images[0].shape[2]), dtype=images[0].dtype, ) for i, img in enumerate(images): row = i // ncol col = i % ncol grid[ row * img.shape[0] : (row + 1) * img.shape[0], col * img.shape[1] : (col + 1) * img.shape[1], ] = img return grid def notes_on_image(img, notes=None): img = np.pad(img, ((0, 32), (0, 0), (0, 0)), "constant", constant_values=0) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) if notes is not None: img = cv2.putText( img, notes, (0, img.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1, ) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def save_image_with_notes(img, path, notes=None): """ Save an image with notes. """ if isinstance(img, torch.Tensor): img = img.cpu().numpy().transpose(1, 2, 0) if img.dtype == np.float32 or img.dtype == np.float64: img = np.clip(img * 255, 0, 255).astype(np.uint8) img = notes_on_image(img, notes) cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) # debug utils def atol(x, y): """ Absolute tolerance. """ return torch.abs(x - y) def rtol(x, y): """ Relative tolerance. """ return torch.abs(x - y) / torch.clamp_min( torch.maximum(torch.abs(x), torch.abs(y)), 1e-12 ) # print utils def indent(s, n=4): """ Indent a string. """ lines = s.split("\n") for i in range(1, len(lines)): lines[i] = " " * n + lines[i] return "\n".join(lines)