import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Загружаем автоэнкодер и VAE taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained( "ifmain/UltraReal_Fine-Tune", subfolder="vae", torch_dtype=dtype ).to(device) # Загружаем основной пайплайн pipe = DiffusionPipeline.from_pretrained( "ifmain/UltraReal_Fine-Tune", torch_dtype=dtype, vae=taef1 ).to(device) torch.cuda.empty_cache() # Подключаем LoRA pipe.load_lora_weights("ifMain/realism") pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 @spaces.GPU(duration=75) def infer( prompt, seed=42, randomize_seed=False, width=1280, height=732, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True) ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", good_vae=good_vae, ): yield img, seed # Полные примеры с различными стилями и условиями съемки full_examples = [ ["d1g1cam, amateur photo, low-lit, Young woman, late 20s, casually dressed in an oversized pink T-shirt, outdoors, her gaze directed to the side, sad expression."], ["v8s, Dimly lit photo, grungy aesthetic, gritty urban, Los Angeles city on background, interior of muscle car driving at high speed, first-person perspective."], ["35mm film photo, high contrast, cinematic lighting, mid-20s man with messy dark hair and a leather jacket, standing under neon lights, rainy evening, water reflections on pavement."], ["Vintage Polaroid, warm and faded colors, soft focus. A child playing in a sunflower field, early morning sunlight filtering through the leaves, a dreamy nostalgic atmosphere."] ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( """# UltraReal Fine-Tune (Flux.1 Dev) **🚀 Фотореализм нового уровня!** Вышла 4-я версия **UltraReal Fine-Tune**, основанная на **Flux.1 Dev**. Скачать можно тут: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133) **🚀 Next-level photorealism!** The 4th version of **UltraReal Fine-Tune**, based on **Flux.1 Dev**, has been released. You can download it here: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133) [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] """ ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=732, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1280, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples=full_examples, fn=infer, inputs=[prompt], # Теперь передаём только prompt outputs=[result], cache_examples=False ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed] ) demo.launch()