igalilea commited on
Commit
dcc9312
·
1 Parent(s): 8d5ed56

Upload folder using huggingface_hub

Browse files
02-saving-a-basic-fastai-model.ipynb ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "id": "98d53c05"
7
+ },
8
+ "source": [
9
+ "## Saving a Cats v Dogs Model"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "markdown",
14
+ "metadata": {},
15
+ "source": [
16
+ "This is a minimal example showing how to train a fastai model on Kaggle, and save it so you can use it in your app."
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": null,
22
+ "metadata": {
23
+ "_kg_hide-input": true,
24
+ "_kg_hide-output": true,
25
+ "execution": {
26
+ "iopub.execute_input": "2022-05-03T05:51:37.949032Z",
27
+ "iopub.status.busy": "2022-05-03T05:51:37.948558Z",
28
+ "iopub.status.idle": "2022-05-03T05:51:59.531217Z",
29
+ "shell.execute_reply": "2022-05-03T05:51:59.530294Z",
30
+ "shell.execute_reply.started": "2022-05-03T05:51:37.948947Z"
31
+ },
32
+ "id": "evvA0fqvSblq",
33
+ "outputId": "ba21b811-767c-459a-ccdf-044758720a55"
34
+ },
35
+ "outputs": [],
36
+ "source": [
37
+ "# Make sure we've got the latest version of fastai:\n",
38
+ "!pip install -Uqq fastai"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "markdown",
43
+ "metadata": {},
44
+ "source": [
45
+ "First, import all the stuff we need from fastai:"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": null,
51
+ "metadata": {
52
+ "execution": {
53
+ "iopub.execute_input": "2022-05-03T05:51:59.534478Z",
54
+ "iopub.status.busy": "2022-05-03T05:51:59.533878Z",
55
+ "iopub.status.idle": "2022-05-03T05:52:02.177975Z",
56
+ "shell.execute_reply": "2022-05-03T05:52:02.177267Z",
57
+ "shell.execute_reply.started": "2022-05-03T05:51:59.534432Z"
58
+ },
59
+ "id": "44eb0ad3"
60
+ },
61
+ "outputs": [],
62
+ "source": [
63
+ "from fastai.vision.all import *"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "markdown",
68
+ "metadata": {},
69
+ "source": [
70
+ "Download and decompress our dataset, which is pictures of dogs and cats:"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": null,
76
+ "metadata": {
77
+ "execution": {
78
+ "iopub.execute_input": "2022-05-03T05:52:02.180691Z",
79
+ "iopub.status.busy": "2022-05-03T05:52:02.180192Z",
80
+ "iopub.status.idle": "2022-05-03T05:53:02.465242Z",
81
+ "shell.execute_reply": "2022-05-03T05:53:02.464516Z",
82
+ "shell.execute_reply.started": "2022-05-03T05:52:02.180651Z"
83
+ }
84
+ },
85
+ "outputs": [],
86
+ "source": [
87
+ "path = untar_data(URLs.PETS)/'images'"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "markdown",
92
+ "metadata": {},
93
+ "source": [
94
+ "We need a way to label our images as dogs or cats. In this dataset, pictures of cats are given a filename that starts with a capital letter:"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "metadata": {
101
+ "execution": {
102
+ "iopub.execute_input": "2022-05-03T05:53:02.467572Z",
103
+ "iopub.status.busy": "2022-05-03T05:53:02.467289Z",
104
+ "iopub.status.idle": "2022-05-03T05:53:02.474701Z",
105
+ "shell.execute_reply": "2022-05-03T05:53:02.474109Z",
106
+ "shell.execute_reply.started": "2022-05-03T05:53:02.467536Z"
107
+ },
108
+ "id": "44eb0ad3"
109
+ },
110
+ "outputs": [],
111
+ "source": [
112
+ "def is_cat(x): return x[0].isupper() "
113
+ ]
114
+ },
115
+ {
116
+ "cell_type": "markdown",
117
+ "metadata": {},
118
+ "source": [
119
+ "Now we can create our `DataLoaders`:"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "code",
124
+ "execution_count": null,
125
+ "metadata": {
126
+ "execution": {
127
+ "iopub.execute_input": "2022-05-03T05:53:02.476084Z",
128
+ "iopub.status.busy": "2022-05-03T05:53:02.475754Z",
129
+ "iopub.status.idle": "2022-05-03T05:53:06.703777Z",
130
+ "shell.execute_reply": "2022-05-03T05:53:06.703023Z",
131
+ "shell.execute_reply.started": "2022-05-03T05:53:02.476052Z"
132
+ },
133
+ "id": "44eb0ad3"
134
+ },
135
+ "outputs": [],
136
+ "source": [
137
+ "dls = ImageDataLoaders.from_name_func('.',\n",
138
+ " get_image_files(path), valid_pct=0.2, seed=42,\n",
139
+ " label_func=is_cat,\n",
140
+ " item_tfms=Resize(192))"
141
+ ]
142
+ },
143
+ {
144
+ "cell_type": "markdown",
145
+ "metadata": {},
146
+ "source": [
147
+ "... and train our model, a resnet18 (to keep it small and fast):"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "metadata": {
154
+ "execution": {
155
+ "iopub.execute_input": "2022-05-03T05:53:28.093059Z",
156
+ "iopub.status.busy": "2022-05-03T05:53:28.092381Z"
157
+ },
158
+ "id": "c107f724",
159
+ "outputId": "fcc1de68-7c8b-43f5-b9eb-fcdb0773ef07"
160
+ },
161
+ "outputs": [],
162
+ "source": [
163
+ "learn = vision_learner(dls, resnet18, metrics=error_rate)\n",
164
+ "learn.fine_tune(3)"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "markdown",
169
+ "metadata": {},
170
+ "source": [
171
+ "Now we can export our trained `Learner`. This contains all the information needed to run the model:"
172
+ ]
173
+ },
174
+ {
175
+ "cell_type": "code",
176
+ "execution_count": null,
177
+ "metadata": {
178
+ "id": "ae2bc6ac"
179
+ },
180
+ "outputs": [],
181
+ "source": [
182
+ "learn.export('model.pkl')"
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "markdown",
187
+ "metadata": {
188
+ "id": "Q2HTrQKTf3BV"
189
+ },
190
+ "source": [
191
+ "Finally, open the Kaggle sidebar on the right if it's not already, and find the section marked \"Output\". Open the `/kaggle/working` folder, and you'll see `model.pkl`. Click on it, then click on the menu on the right that appears, and choose \"Download\". After a few seconds, your model will be downloaded to your computer, where you can then create your app that uses the model."
192
+ ]
193
+ }
194
+ ],
195
+ "metadata": {
196
+ "kernelspec": {
197
+ "display_name": "Python 3 (ipykernel)",
198
+ "language": "python",
199
+ "name": "python3"
200
+ },
201
+ "language_info": {
202
+ "codemirror_mode": {
203
+ "name": "ipython",
204
+ "version": 3
205
+ },
206
+ "file_extension": ".py",
207
+ "mimetype": "text/x-python",
208
+ "name": "python",
209
+ "nbconvert_exporter": "python",
210
+ "pygments_lexer": "ipython3",
211
+ "version": "3.8.16"
212
+ }
213
+ },
214
+ "nbformat": 4,
215
+ "nbformat_minor": 4
216
+ }
02_production.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Simple Classifier Fastai
3
- emoji: 🌖
4
- colorFrom: indigo
5
- colorTo: pink
6
  sdk: gradio
7
  sdk_version: 4.10.0
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Simple_classifier_fastai
3
+ app_file: simple_calssifier.py
 
 
4
  sdk: gradio
5
  sdk_version: 4.10.0
 
 
6
  ---
 
 
export.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11537622d45c64cc6acbaee06a03ab1f03b2af3050da523b489e3ace08cb7bce
3
+ size 103057580
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ fastai
simple_calssifier.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastai.vision.all import *
2
+ import gradio as gr
3
+ learn = load_learner('export.pkl')
4
+ labels = learn.dls.vocab
5
+
6
+ def predict(img):
7
+ img = PILImage.create(img)
8
+ pred,pred_idx,probs = learn.predict(img)
9
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
10
+
11
+
12
+ #gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)
13
+ gr.Interface(fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=3)).launch(share=True)
simple_classifier_gradio.ipynb ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import torch\n",
10
+ "device = torch.device('cpu')"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "code",
15
+ "execution_count": 2,
16
+ "metadata": {},
17
+ "outputs": [
18
+ {
19
+ "name": "stderr",
20
+ "output_type": "stream",
21
+ "text": [
22
+ "/usr/local/lib/python3.11/site-packages/fastai/data/transforms.py:225: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead\n",
23
+ " if is_categorical_dtype(col):\n"
24
+ ]
25
+ },
26
+ {
27
+ "name": "stdout",
28
+ "output_type": "stream",
29
+ "text": [
30
+ "Could not do one pass in your dataloader, there is something wrong in it. Please see the stack trace below:\n"
31
+ ]
32
+ },
33
+ {
34
+ "ename": "RuntimeError",
35
+ "evalue": "The MPS backend is supported on MacOS 12.3+.Current OS version can be queried using `sw_vers`",
36
+ "output_type": "error",
37
+ "traceback": [
38
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
39
+ "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
40
+ "Cell \u001b[0;32mIn[2], line 5\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfastai\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mvision\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mall\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;241m*\u001b[39m\n\u001b[1;32m 4\u001b[0m path \u001b[38;5;241m=\u001b[39m untar_data(URLs\u001b[38;5;241m.\u001b[39mPETS)\n\u001b[0;32m----> 5\u001b[0m dls \u001b[38;5;241m=\u001b[39m \u001b[43mImageDataLoaders\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_name_re\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mget_image_files\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mimages\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpat\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m(.+)_\u001b[39;49m\u001b[38;5;124;43m\\\u001b[39;49m\u001b[38;5;124;43md+.jpg\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mitem_tfms\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mResize\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m460\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_tfms\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maug_transforms\u001b[49m\u001b[43m(\u001b[49m\u001b[43msize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m224\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmin_scale\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.75\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m learn \u001b[38;5;241m=\u001b[39m vision_learner(dls, models\u001b[38;5;241m.\u001b[39mresnet50, metrics\u001b[38;5;241m=\u001b[39maccuracy)\n\u001b[1;32m 7\u001b[0m learn\u001b[38;5;241m.\u001b[39mfine_tune(\u001b[38;5;241m1\u001b[39m)\n",
41
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/vision/data.py:160\u001b[0m, in \u001b[0;36mImageDataLoaders.from_name_re\u001b[0;34m(cls, path, fnames, pat, **kwargs)\u001b[0m\n\u001b[1;32m 156\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 157\u001b[0m \u001b[38;5;129m@delegates\u001b[39m(DataLoaders\u001b[38;5;241m.\u001b[39mfrom_dblock)\n\u001b[1;32m 158\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_name_re\u001b[39m(\u001b[38;5;28mcls\u001b[39m, path, fnames, pat, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 159\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCreate from the name attrs of `fnames` in `path`s with re expression `pat`\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 160\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_name_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfnames\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mRegexLabeller\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpat\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
42
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/vision/data.py:149\u001b[0m, in \u001b[0;36mImageDataLoaders.from_name_func\u001b[0;34m(cls, path, fnames, label_func, **kwargs)\u001b[0m\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlabel_func couldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt be lambda function on Windows\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 148\u001b[0m f \u001b[38;5;241m=\u001b[39m using_attr(label_func, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m--> 149\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_path_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfnames\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
43
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/vision/data.py:135\u001b[0m, in \u001b[0;36mImageDataLoaders.from_path_func\u001b[0;34m(cls, path, fnames, label_func, valid_pct, seed, item_tfms, batch_tfms, img_cls, **kwargs)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCreate from list of `fnames` in `path`s with `label_func`\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 130\u001b[0m dblock \u001b[38;5;241m=\u001b[39m DataBlock(blocks\u001b[38;5;241m=\u001b[39m(ImageBlock(img_cls), CategoryBlock),\n\u001b[1;32m 131\u001b[0m splitter\u001b[38;5;241m=\u001b[39mRandomSplitter(valid_pct, seed\u001b[38;5;241m=\u001b[39mseed),\n\u001b[1;32m 132\u001b[0m get_y\u001b[38;5;241m=\u001b[39mlabel_func,\n\u001b[1;32m 133\u001b[0m item_tfms\u001b[38;5;241m=\u001b[39mitem_tfms,\n\u001b[1;32m 134\u001b[0m batch_tfms\u001b[38;5;241m=\u001b[39mbatch_tfms)\n\u001b[0;32m--> 135\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_dblock\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdblock\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfnames\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
44
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/data/core.py:284\u001b[0m, in \u001b[0;36mDataLoaders.from_dblock\u001b[0;34m(cls, dblock, source, path, bs, val_bs, shuffle, device, **kwargs)\u001b[0m\n\u001b[1;32m 273\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_dblock\u001b[39m(\u001b[38;5;28mcls\u001b[39m, \n\u001b[1;32m 275\u001b[0m dblock, \u001b[38;5;66;03m# `DataBlock` object\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 282\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs\n\u001b[1;32m 283\u001b[0m ):\n\u001b[0;32m--> 284\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdblock\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdataloaders\u001b[49m\u001b[43m(\u001b[49m\u001b[43msource\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mval_bs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mval_bs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mshuffle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mshuffle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdevice\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
45
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/data/block.py:157\u001b[0m, in \u001b[0;36mDataBlock.dataloaders\u001b[0;34m(self, source, path, verbose, **kwargs)\u001b[0m\n\u001b[1;32m 155\u001b[0m dsets \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdatasets(source, verbose\u001b[38;5;241m=\u001b[39mverbose)\n\u001b[1;32m 156\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdls_kwargs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mverbose\u001b[39m\u001b[38;5;124m'\u001b[39m: verbose}\n\u001b[0;32m--> 157\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdsets\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdataloaders\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mafter_item\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitem_tfms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mafter_batch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbatch_tfms\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
46
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/data/core.py:337\u001b[0m, in \u001b[0;36mFilteredBase.dataloaders\u001b[0;34m(self, bs, shuffle_train, shuffle, val_shuffle, n, path, dl_type, dl_kwargs, device, drop_last, val_bs, **kwargs)\u001b[0m\n\u001b[1;32m 335\u001b[0m dl \u001b[38;5;241m=\u001b[39m dl_type(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msubset(\u001b[38;5;241m0\u001b[39m), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mmerge(kwargs,def_kwargs, dl_kwargs[\u001b[38;5;241m0\u001b[39m]))\n\u001b[1;32m 336\u001b[0m def_kwargs \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbs\u001b[39m\u001b[38;5;124m'\u001b[39m:bs \u001b[38;5;28;01mif\u001b[39;00m val_bs \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m val_bs,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mshuffle\u001b[39m\u001b[38;5;124m'\u001b[39m:val_shuffle,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn\u001b[39m\u001b[38;5;124m'\u001b[39m:\u001b[38;5;28;01mNone\u001b[39;00m,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdrop_last\u001b[39m\u001b[38;5;124m'\u001b[39m:\u001b[38;5;28;01mFalse\u001b[39;00m}\n\u001b[0;32m--> 337\u001b[0m dls \u001b[38;5;241m=\u001b[39m [dl] \u001b[38;5;241m+\u001b[39m \u001b[43m[\u001b[49m\u001b[43mdl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnew\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msubset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mi\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mmerge\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43mdef_kwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43mval_kwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43mdl_kwargs\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 338\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mi\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mrange\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_subsets\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 339\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_dbunch_type(\u001b[38;5;241m*\u001b[39mdls, path\u001b[38;5;241m=\u001b[39mpath, device\u001b[38;5;241m=\u001b[39mdevice)\n",
47
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/data/core.py:337\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 335\u001b[0m dl \u001b[38;5;241m=\u001b[39m dl_type(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msubset(\u001b[38;5;241m0\u001b[39m), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mmerge(kwargs,def_kwargs, dl_kwargs[\u001b[38;5;241m0\u001b[39m]))\n\u001b[1;32m 336\u001b[0m def_kwargs \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbs\u001b[39m\u001b[38;5;124m'\u001b[39m:bs \u001b[38;5;28;01mif\u001b[39;00m val_bs \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m val_bs,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mshuffle\u001b[39m\u001b[38;5;124m'\u001b[39m:val_shuffle,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn\u001b[39m\u001b[38;5;124m'\u001b[39m:\u001b[38;5;28;01mNone\u001b[39;00m,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdrop_last\u001b[39m\u001b[38;5;124m'\u001b[39m:\u001b[38;5;28;01mFalse\u001b[39;00m}\n\u001b[0;32m--> 337\u001b[0m dls \u001b[38;5;241m=\u001b[39m [dl] \u001b[38;5;241m+\u001b[39m [\u001b[43mdl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnew\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msubset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mi\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mmerge\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43mdef_kwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43mval_kwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43mdl_kwargs\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 338\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m1\u001b[39m, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_subsets)]\n\u001b[1;32m 339\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_dbunch_type(\u001b[38;5;241m*\u001b[39mdls, path\u001b[38;5;241m=\u001b[39mpath, device\u001b[38;5;241m=\u001b[39mdevice)\n",
48
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/data/core.py:97\u001b[0m, in \u001b[0;36mTfmdDL.new\u001b[0;34m(self, dataset, cls, **kwargs)\u001b[0m\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_n_inp\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_types\u001b[39m\u001b[38;5;124m'\u001b[39m):\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 97\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_one_pass\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 98\u001b[0m res\u001b[38;5;241m.\u001b[39m_n_inp,res\u001b[38;5;241m.\u001b[39m_types \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_n_inp,\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_types\n\u001b[1;32m 99\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \n",
49
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/data/core.py:79\u001b[0m, in \u001b[0;36mTfmdDL._one_pass\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 77\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_one_pass\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 78\u001b[0m b \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdo_batch([\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdo_item(\u001b[38;5;28;01mNone\u001b[39;00m)])\n\u001b[0;32m---> 79\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m: b \u001b[38;5;241m=\u001b[39m \u001b[43mto_device\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdevice\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 80\u001b[0m its \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mafter_batch(b)\n\u001b[1;32m 81\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_n_inp \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(its, (\u001b[38;5;28mlist\u001b[39m,\u001b[38;5;28mtuple\u001b[39m)) \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(its)\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m1\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(its)\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m\n",
50
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/torch_core.py:285\u001b[0m, in \u001b[0;36mto_device\u001b[0;34m(b, device, non_blocking)\u001b[0m\n\u001b[1;32m 283\u001b[0m \u001b[38;5;66;03m# if hasattr(o, \"to_device\"): return o.to_device(device)\u001b[39;00m\n\u001b[1;32m 284\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m o\n\u001b[0;32m--> 285\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_inner\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\n",
51
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/torch_core.py:222\u001b[0m, in \u001b[0;36mapply\u001b[0;34m(func, x, *args, **kwargs)\u001b[0m\n\u001b[1;32m 220\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mapply\u001b[39m(func, x, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 221\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mApply `func` recursively to `x`, passing on args\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 222\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_listy(x): \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mtype\u001b[39m(x)(\u001b[43m[\u001b[49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mo\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mo\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mx\u001b[49m\u001b[43m]\u001b[49m)\n\u001b[1;32m 223\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x,\u001b[38;5;28mdict\u001b[39m): \u001b[38;5;28;01mreturn\u001b[39;00m {k: apply(func, v, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;28;01mfor\u001b[39;00m k,v \u001b[38;5;129;01min\u001b[39;00m x\u001b[38;5;241m.\u001b[39mitems()}\n\u001b[1;32m 224\u001b[0m res \u001b[38;5;241m=\u001b[39m func(x, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
52
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/torch_core.py:222\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 220\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mapply\u001b[39m(func, x, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 221\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mApply `func` recursively to `x`, passing on args\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m--> 222\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_listy(x): \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mtype\u001b[39m(x)([\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mo\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m o \u001b[38;5;129;01min\u001b[39;00m x])\n\u001b[1;32m 223\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x,\u001b[38;5;28mdict\u001b[39m): \u001b[38;5;28;01mreturn\u001b[39;00m {k: apply(func, v, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;28;01mfor\u001b[39;00m k,v \u001b[38;5;129;01min\u001b[39;00m x\u001b[38;5;241m.\u001b[39mitems()}\n\u001b[1;32m 224\u001b[0m res \u001b[38;5;241m=\u001b[39m func(x, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
53
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/torch_core.py:224\u001b[0m, in \u001b[0;36mapply\u001b[0;34m(func, x, *args, **kwargs)\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_listy(x): \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mtype\u001b[39m(x)([apply(func, o, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;28;01mfor\u001b[39;00m o \u001b[38;5;129;01min\u001b[39;00m x])\n\u001b[1;32m 223\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x,\u001b[38;5;28mdict\u001b[39m): \u001b[38;5;28;01mreturn\u001b[39;00m {k: apply(func, v, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;28;01mfor\u001b[39;00m k,v \u001b[38;5;129;01min\u001b[39;00m x\u001b[38;5;241m.\u001b[39mitems()}\n\u001b[0;32m--> 224\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 225\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m res \u001b[38;5;28;01mif\u001b[39;00m x \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m retain_type(res, x)\n",
54
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/torch_core.py:282\u001b[0m, in \u001b[0;36mto_device.<locals>._inner\u001b[0;34m(o)\u001b[0m\n\u001b[1;32m 281\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_inner\u001b[39m(o):\n\u001b[0;32m--> 282\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(o,Tensor): \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mo\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdevice\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnon_blocking\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnon_blocking\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 283\u001b[0m \u001b[38;5;66;03m# if hasattr(o, \"to_device\"): return o.to_device(device)\u001b[39;00m\n\u001b[1;32m 284\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m o\n",
55
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/fastai/torch_core.py:382\u001b[0m, in \u001b[0;36mTensorBase.__torch_function__\u001b[0;34m(cls, func, types, args, kwargs)\u001b[0m\n\u001b[1;32m 380\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mdebug \u001b[38;5;129;01mand\u001b[39;00m func\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m (\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__str__\u001b[39m\u001b[38;5;124m'\u001b[39m,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__repr__\u001b[39m\u001b[38;5;124m'\u001b[39m): \u001b[38;5;28mprint\u001b[39m(func, types, args, kwargs)\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _torch_handled(args, \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m_opt, func): types \u001b[38;5;241m=\u001b[39m (torch\u001b[38;5;241m.\u001b[39mTensor,)\n\u001b[0;32m--> 382\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__torch_function__\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtypes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mifnone\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 383\u001b[0m dict_objs \u001b[38;5;241m=\u001b[39m _find_args(args) \u001b[38;5;28;01mif\u001b[39;00m args \u001b[38;5;28;01melse\u001b[39;00m _find_args(\u001b[38;5;28mlist\u001b[39m(kwargs\u001b[38;5;241m.\u001b[39mvalues()))\n\u001b[1;32m 384\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28missubclass\u001b[39m(\u001b[38;5;28mtype\u001b[39m(res),TensorBase) \u001b[38;5;129;01mand\u001b[39;00m dict_objs: res\u001b[38;5;241m.\u001b[39mset_meta(dict_objs[\u001b[38;5;241m0\u001b[39m],as_copy\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n",
56
+ "File \u001b[0;32m/usr/local/lib/python3.11/site-packages/torch/_tensor.py:1295\u001b[0m, in \u001b[0;36mTensor.__torch_function__\u001b[0;34m(cls, func, types, args, kwargs)\u001b[0m\n\u001b[1;32m 1292\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mNotImplemented\u001b[39m\n\u001b[1;32m 1294\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _C\u001b[38;5;241m.\u001b[39mDisableTorchFunctionSubclass():\n\u001b[0;32m-> 1295\u001b[0m ret \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1296\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m func \u001b[38;5;129;01min\u001b[39;00m get_default_nowrap_functions():\n\u001b[1;32m 1297\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ret\n",
57
+ "\u001b[0;31mRuntimeError\u001b[0m: The MPS backend is supported on MacOS 12.3+.Current OS version can be queried using `sw_vers`"
58
+ ]
59
+ }
60
+ ],
61
+ "source": [
62
+ "from fastai.vision.all import *\n",
63
+ "\n",
64
+ "\n",
65
+ "path = untar_data(URLs.PETS)\n",
66
+ "dls = ImageDataLoaders.from_name_re(path, get_image_files(path/'images'), pat='(.+)_\\d+.jpg', item_tfms=Resize(460), batch_tfms=aug_transforms(size=224, min_scale=0.75), torch.device('cpu'))\n",
67
+ "learn = vision_learner(dls, models.resnet50, metrics=accuracy)\n",
68
+ "learn.fine_tune(1)\n",
69
+ "learn.path = Path('.')\n",
70
+ "learn.export()"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": null,
76
+ "metadata": {},
77
+ "outputs": [],
78
+ "source": []
79
+ }
80
+ ],
81
+ "metadata": {
82
+ "kernelspec": {
83
+ "display_name": "Python 3",
84
+ "language": "python",
85
+ "name": "python3"
86
+ },
87
+ "language_info": {
88
+ "codemirror_mode": {
89
+ "name": "ipython",
90
+ "version": 3
91
+ },
92
+ "file_extension": ".py",
93
+ "mimetype": "text/x-python",
94
+ "name": "python",
95
+ "nbconvert_exporter": "python",
96
+ "pygments_lexer": "ipython3",
97
+ "version": "3.11.6"
98
+ }
99
+ },
100
+ "nbformat": 4,
101
+ "nbformat_minor": 2
102
+ }