{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4",
"authorship_tag": "ABX9TyPx6OEbh6J5Mo6yj31T0oBr",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU",
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"b1957e522dd54dbeb9ef6eb9fa7f3890": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_fc5fcb2c5ebf49039e4e929584862190",
"IPY_MODEL_337acbefe08747bf8364f30360a8b656",
"IPY_MODEL_10d2b6765d584f31bad990e61777cf77"
],
"layout": "IPY_MODEL_9508600d824b482a81524079bb235794"
}
},
"fc5fcb2c5ebf49039e4e929584862190": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_cb0541aef16b403387b9c657b0ef0c24",
"placeholder": "",
"style": "IPY_MODEL_4b7d598ecf6e40319a0d6d33dafefa0b",
"value": "Downloading (…)okenizer_config.json: 100%"
}
},
"337acbefe08747bf8364f30360a8b656": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_9bc7dfab3fb54c4383478ae06955d930",
"max": 222,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_43a896f9e9734824ba4e180f325e9ffe",
"value": 222
}
},
"10d2b6765d584f31bad990e61777cf77": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_aa0baa87e92641eba51acd3beb51ff8b",
"placeholder": "",
"style": "IPY_MODEL_69723330251b48eaa3f2bd7ca74ca504",
"value": " 222/222 [00:00<00:00, 6.32kB/s]"
}
},
"9508600d824b482a81524079bb235794": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cb0541aef16b403387b9c657b0ef0c24": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4b7d598ecf6e40319a0d6d33dafefa0b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"9bc7dfab3fb54c4383478ae06955d930": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"43a896f9e9734824ba4e180f325e9ffe": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"aa0baa87e92641eba51acd3beb51ff8b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"69723330251b48eaa3f2bd7ca74ca504": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"7d2660d25a3b4795ad52102e47da21f1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_3a89d3b325bd430b8fc84830e67da29f",
"IPY_MODEL_6d547b31a7674b018f5465ac490ba7c1",
"IPY_MODEL_90bd165c250549c195ee38dbe62072e0"
],
"layout": "IPY_MODEL_72e84a86cb9a4a1d8dd67b9863769475"
}
},
"3a89d3b325bd430b8fc84830e67da29f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_59025a9a25e5454a84542f03e58e5e2a",
"placeholder": "",
"style": "IPY_MODEL_2a8656a4be29476089cad73ce9430269",
"value": "Downloading tokenizer.json: 100%"
}
},
"6d547b31a7674b018f5465ac490ba7c1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_73c729434fa043bba198dffe43d79195",
"max": 14500438,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_9bcff2ba4e0a4ba5be4e2ce9b6a8168f",
"value": 14500438
}
},
"90bd165c250549c195ee38dbe62072e0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4c81b194a5494c69af637f0e2021a89b",
"placeholder": "",
"style": "IPY_MODEL_63a1021b09744473b5c0cc4807056873",
"value": " 14.5M/14.5M [00:00<00:00, 92.5MB/s]"
}
},
"72e84a86cb9a4a1d8dd67b9863769475": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"59025a9a25e5454a84542f03e58e5e2a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2a8656a4be29476089cad73ce9430269": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"73c729434fa043bba198dffe43d79195": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9bcff2ba4e0a4ba5be4e2ce9b6a8168f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"4c81b194a5494c69af637f0e2021a89b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"63a1021b09744473b5c0cc4807056873": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"1dab82698b734042966b7a3690bf957a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_00da4c063b8f41a28a3db4ac4ab71f12",
"IPY_MODEL_67fab623c149486b827454857b11f43b",
"IPY_MODEL_dcef901cd3564cdca7abb6637401c521"
],
"layout": "IPY_MODEL_d0545a36f2da43ce890e00704ffab923"
}
},
"00da4c063b8f41a28a3db4ac4ab71f12": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0f6f731781cf4596b6590ae631bfa940",
"placeholder": "",
"style": "IPY_MODEL_afcfc89bf5434eb394a51a8678203f05",
"value": "Downloading (…)cial_tokens_map.json: 100%"
}
},
"67fab623c149486b827454857b11f43b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_052c36d6bb6f4600baa8e757ba54746b",
"max": 85,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_d4b32645efae4fa3bd20ece031216126",
"value": 85
}
},
"dcef901cd3564cdca7abb6637401c521": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_bcaa7537d9be4828a90a0757d454ace2",
"placeholder": "",
"style": "IPY_MODEL_1ddf8227240d43c2919bcea03e50b924",
"value": " 85.0/85.0 [00:00<00:00, 3.20kB/s]"
}
},
"d0545a36f2da43ce890e00704ffab923": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0f6f731781cf4596b6590ae631bfa940": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"afcfc89bf5434eb394a51a8678203f05": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"052c36d6bb6f4600baa8e757ba54746b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d4b32645efae4fa3bd20ece031216126": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"bcaa7537d9be4828a90a0757d454ace2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1ddf8227240d43c2919bcea03e50b924": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"eb2f03c2a6464c719904d0b0f7fc7626": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_32d30fd9c1524c8a80bc96df1e23c036",
"IPY_MODEL_3e885a0c0d734961aa5f05646814f506",
"IPY_MODEL_dc0966fee5524fcb855ff3c2b79defe9"
],
"layout": "IPY_MODEL_d0a43d72a9c54bd089782b9994c6cb0e"
}
},
"32d30fd9c1524c8a80bc96df1e23c036": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b5c4f0046a9644c2b8dbe47118af259e",
"placeholder": "",
"style": "IPY_MODEL_fd574f9e2a474b4c9bc7cc114e6bd5ab",
"value": "Downloading (…)lve/main/config.json: 100%"
}
},
"3e885a0c0d734961aa5f05646814f506": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_aa0cc94fe47f470f9bb3b340fb909b88",
"max": 693,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_1384342fab904fb49e9dedae2d48c07d",
"value": 693
}
},
"dc0966fee5524fcb855ff3c2b79defe9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d61a5b7cc77e4d958bdc0842e844101c",
"placeholder": "",
"style": "IPY_MODEL_a1773aab0d824cf89821f2d3422d4f84",
"value": " 693/693 [00:00<00:00, 35.8kB/s]"
}
},
"d0a43d72a9c54bd089782b9994c6cb0e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b5c4f0046a9644c2b8dbe47118af259e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fd574f9e2a474b4c9bc7cc114e6bd5ab": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"aa0cc94fe47f470f9bb3b340fb909b88": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1384342fab904fb49e9dedae2d48c07d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"d61a5b7cc77e4d958bdc0842e844101c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a1773aab0d824cf89821f2d3422d4f84": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"3d5283e9ca3e4acfb85cac9fb307a00f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_8ec591dde20e444d916abb377ae2c9e4",
"IPY_MODEL_a932c62e80c54f439bd6154248b91397",
"IPY_MODEL_8fbd8626812d4187a84c96b3cad1c42c"
],
"layout": "IPY_MODEL_a11386f0e2d34e3da6faa78247f4743b"
}
},
"8ec591dde20e444d916abb377ae2c9e4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_41dc540a879845f9be713c37ccdef601",
"placeholder": "",
"style": "IPY_MODEL_d7ddd2a2c3544b109beffd33f686ed81",
"value": "Downloading model.safetensors: 100%"
}
},
"a932c62e80c54f439bd6154248b91397": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b5c2194abb1947d5a40c2c26d01051f3",
"max": 1118459525,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_60601bd310754530851a54ebfa909d0b",
"value": 1118459525
}
},
"8fbd8626812d4187a84c96b3cad1c42c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_f11a639f453c4bd8b951b5877eb6d764",
"placeholder": "",
"style": "IPY_MODEL_64a158c75fc94f8780ae94b1f21206f7",
"value": " 1.12G/1.12G [00:08<00:00, 159MB/s]"
}
},
"a11386f0e2d34e3da6faa78247f4743b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"41dc540a879845f9be713c37ccdef601": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d7ddd2a2c3544b109beffd33f686ed81": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"b5c2194abb1947d5a40c2c26d01051f3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"60601bd310754530851a54ebfa909d0b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"f11a639f453c4bd8b951b5877eb6d764": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"64a158c75fc94f8780ae94b1f21206f7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"9eff2e79021d467e8fee3c86cbdeae85": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_9e8e939eb7ef47349808ed3d1b6dc4e8",
"IPY_MODEL_591b18e543b44213a8d39b6ff1a0e1b5",
"IPY_MODEL_c59abc1646554c12b2b002c0052a40b6"
],
"layout": "IPY_MODEL_89f6b8cb1b8f44e8b815806674fc1ba5"
}
},
"9e8e939eb7ef47349808ed3d1b6dc4e8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_6d0b22a1fb4844b2820e4853507a4fc0",
"placeholder": "",
"style": "IPY_MODEL_4e3569279b4f4fc4897020d9fc25c8b7",
"value": "Downloading (…)olve/main/vocab.json: 100%"
}
},
"591b18e543b44213a8d39b6ff1a0e1b5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e60050254b0e47c6bb28893e343b358e",
"max": 1042301,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_c133f47dae7e41b48b3798f212d0d1a0",
"value": 1042301
}
},
"c59abc1646554c12b2b002c0052a40b6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e1e5e9e89f484df382c2e34ad5a45751",
"placeholder": "",
"style": "IPY_MODEL_8ef990a3ccf948e5afd32b63b761e73f",
"value": " 1.04M/1.04M [00:00<00:00, 5.31MB/s]"
}
},
"89f6b8cb1b8f44e8b815806674fc1ba5": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6d0b22a1fb4844b2820e4853507a4fc0": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4e3569279b4f4fc4897020d9fc25c8b7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e60050254b0e47c6bb28893e343b358e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c133f47dae7e41b48b3798f212d0d1a0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"e1e5e9e89f484df382c2e34ad5a45751": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8ef990a3ccf948e5afd32b63b761e73f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d8b4772f7a4340509465aba9d6ed6e32": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_294d90574705409ebcdc51c4cf57ac85",
"IPY_MODEL_cf7aab67128d4efda9560e0c2faf9eea",
"IPY_MODEL_c3fc52a176214f269077ba96dc4d3d85"
],
"layout": "IPY_MODEL_3adcc9d23e704d37bf726c188ed26364"
}
},
"294d90574705409ebcdc51c4cf57ac85": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_f99c881ba4034bd8b89eb2b8a687acb1",
"placeholder": "",
"style": "IPY_MODEL_aef7d3d7dc6e4602b45eabd72610a2eb",
"value": "Downloading (…)olve/main/merges.txt: 100%"
}
},
"cf7aab67128d4efda9560e0c2faf9eea": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5a9e83b811634e4f8c5f6f563d9240c9",
"max": 456318,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_27e0d7bbceac4d79ab49e822bf52cf3e",
"value": 456318
}
},
"c3fc52a176214f269077ba96dc4d3d85": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4202f988bce64834be53f7946d413bae",
"placeholder": "",
"style": "IPY_MODEL_2d120551cc914fa390af489484643d10",
"value": " 456k/456k [00:00<00:00, 2.47MB/s]"
}
},
"3adcc9d23e704d37bf726c188ed26364": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f99c881ba4034bd8b89eb2b8a687acb1": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"aef7d3d7dc6e4602b45eabd72610a2eb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5a9e83b811634e4f8c5f6f563d9240c9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"27e0d7bbceac4d79ab49e822bf52cf3e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"4202f988bce64834be53f7946d413bae": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2d120551cc914fa390af489484643d10": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"16563760f4ea40af99ef5e2cc2b86ee3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_5df7c7e63dae4f329da244d41d2604b5",
"IPY_MODEL_191a14f06d824d49833efea41e4f53df",
"IPY_MODEL_bd8249c8b35741cfaeb008bd56afe3fb"
],
"layout": "IPY_MODEL_532f46eb1eae4b47a58a460330a251d6"
}
},
"5df7c7e63dae4f329da244d41d2604b5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_cdcbc2416f1041bcbddc20b91cc6161f",
"placeholder": "",
"style": "IPY_MODEL_fb6c331f7d5e4c6795cbdb7f61fdbe29",
"value": "Downloading (…)/main/tokenizer.json: 100%"
}
},
"191a14f06d824d49833efea41e4f53df": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_97cdc1b7888a443f8c64a8c14a110e4f",
"max": 1355256,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_e5dd9cca9bfe41d8bcd14c7d5bc70b27",
"value": 1355256
}
},
"bd8249c8b35741cfaeb008bd56afe3fb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e21d185f23724abe9e6739094829c013",
"placeholder": "",
"style": "IPY_MODEL_1513f098a757454595bd2075c9e16860",
"value": " 1.36M/1.36M [00:00<00:00, 20.7MB/s]"
}
},
"532f46eb1eae4b47a58a460330a251d6": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cdcbc2416f1041bcbddc20b91cc6161f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fb6c331f7d5e4c6795cbdb7f61fdbe29": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"97cdc1b7888a443f8c64a8c14a110e4f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e5dd9cca9bfe41d8bcd14c7d5bc70b27": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"e21d185f23724abe9e6739094829c013": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1513f098a757454595bd2075c9e16860": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ce42c41c89d648c385947cc4da321f49": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_ceda7bb458e743adbf7cae48df13101a",
"IPY_MODEL_3fdb4575f9354d9f894a92720e14dd7a",
"IPY_MODEL_ced0124dcde4480d9cb32a2108bcd9cc"
],
"layout": "IPY_MODEL_4821d8481e73436c9d53e2af2565198a"
}
},
"ceda7bb458e743adbf7cae48df13101a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0f71a0cac56849b9b7149135d20f47f2",
"placeholder": "",
"style": "IPY_MODEL_e91b3949141c41559a70aa48b6463927",
"value": "Downloading (…)lve/main/config.json: 100%"
}
},
"3fdb4575f9354d9f894a92720e14dd7a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_91974f02945541b2a9b07d07626f2084",
"max": 665,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_801d4f64547d4faaa5d9314e1b91238a",
"value": 665
}
},
"ced0124dcde4480d9cb32a2108bcd9cc": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_58ec6959873c4482863047137aebe234",
"placeholder": "",
"style": "IPY_MODEL_74b7cddac51140a68d746503d80f42f8",
"value": " 665/665 [00:00<00:00, 34.5kB/s]"
}
},
"4821d8481e73436c9d53e2af2565198a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0f71a0cac56849b9b7149135d20f47f2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e91b3949141c41559a70aa48b6463927": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"91974f02945541b2a9b07d07626f2084": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"801d4f64547d4faaa5d9314e1b91238a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"58ec6959873c4482863047137aebe234": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"74b7cddac51140a68d746503d80f42f8": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"a4e5fd02e6f14545912f0c6d2f5706e3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_30b8a8d0906d4d3783c92ffd923ca081",
"IPY_MODEL_2fdae47220eb4d1bbaa4cdaf1c7f4809",
"IPY_MODEL_5b80ebc1eaa2444d9dbb6d072581f04c"
],
"layout": "IPY_MODEL_ce03bdc9ad594e14963e0e6710451d9a"
}
},
"30b8a8d0906d4d3783c92ffd923ca081": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_3eb3a3c1c68f4ca98d3ff0371de49560",
"placeholder": "",
"style": "IPY_MODEL_23665cc7ca524e64aae2510705f9c539",
"value": "Downloading (…)lve/main/config.json: 100%"
}
},
"2fdae47220eb4d1bbaa4cdaf1c7f4809": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0e5cb190b1cf4e70ad0b6117182340d0",
"max": 673,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_fe6283477f464a15950b73e176d2a46d",
"value": 673
}
},
"5b80ebc1eaa2444d9dbb6d072581f04c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b4d6064d5b1143e78c38fc376c140001",
"placeholder": "",
"style": "IPY_MODEL_0427fcaafcb0406fa79cbe84d9bc8f7b",
"value": " 673/673 [00:00<00:00, 24.9kB/s]"
}
},
"ce03bdc9ad594e14963e0e6710451d9a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3eb3a3c1c68f4ca98d3ff0371de49560": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"23665cc7ca524e64aae2510705f9c539": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"0e5cb190b1cf4e70ad0b6117182340d0": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fe6283477f464a15950b73e176d2a46d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"b4d6064d5b1143e78c38fc376c140001": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0427fcaafcb0406fa79cbe84d9bc8f7b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"57b98b51c71e4b3e9b33d0bd40c87309": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_4e6b84b5132b42559d3917fa42e2198b",
"IPY_MODEL_fceefd0f5c5b4867a078c898ef19719c",
"IPY_MODEL_4630b53b50dd4626a651ab8a570e42b1"
],
"layout": "IPY_MODEL_18f1cf46fc654975ac1a56ef05495c7d"
}
},
"4e6b84b5132b42559d3917fa42e2198b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_06cb95571fa44105b3843016c0361baf",
"placeholder": "",
"style": "IPY_MODEL_62f37a8dd3b64c6da2c52fb6d7b088f2",
"value": "Downloading pytorch_model.bin: 100%"
}
},
"fceefd0f5c5b4867a078c898ef19719c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_85a99f91ea494110b338f4989c6697b0",
"max": 435640489,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4cdad64bdfa6415ab2ed7fd216e2cfc9",
"value": 435640489
}
},
"4630b53b50dd4626a651ab8a570e42b1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_dab8a3597ca347abbdd6713e669d76d3",
"placeholder": "",
"style": "IPY_MODEL_a0627bdbf4054f8eb53bfa879c9612d5",
"value": " 436M/436M [00:08<00:00, 61.8MB/s]"
}
},
"18f1cf46fc654975ac1a56ef05495c7d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"06cb95571fa44105b3843016c0361baf": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"62f37a8dd3b64c6da2c52fb6d7b088f2": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"85a99f91ea494110b338f4989c6697b0": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4cdad64bdfa6415ab2ed7fd216e2cfc9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"dab8a3597ca347abbdd6713e669d76d3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a0627bdbf4054f8eb53bfa879c9612d5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"544cec58b89c41648fac8e2748a03a7e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_9e4dc52d95e540e5a8f1be58d2720c9e",
"IPY_MODEL_a8470972ac614ccd886ebe60f938e646",
"IPY_MODEL_d314a920432f457c8f33f0782881476b"
],
"layout": "IPY_MODEL_df7e3a41247244f7999cafbd47346a2b"
}
},
"9e4dc52d95e540e5a8f1be58d2720c9e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2d4038273f3b42b5a4e115885a35abaa",
"placeholder": "",
"style": "IPY_MODEL_e0ac6862e7f245aeab48a8f0a0adbe85",
"value": "Downloading (…)okenizer_config.json: 100%"
}
},
"a8470972ac614ccd886ebe60f938e646": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c42901b4b2cb465cabdb0289936e5bdd",
"max": 314,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_9347fc438337498980f403a69cdc292a",
"value": 314
}
},
"d314a920432f457c8f33f0782881476b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a147998c06734efda8eb41e34fb5673c",
"placeholder": "",
"style": "IPY_MODEL_03efb2c7461e43719207cc68a659606d",
"value": " 314/314 [00:00<00:00, 10.1kB/s]"
}
},
"df7e3a41247244f7999cafbd47346a2b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2d4038273f3b42b5a4e115885a35abaa": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e0ac6862e7f245aeab48a8f0a0adbe85": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"c42901b4b2cb465cabdb0289936e5bdd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9347fc438337498980f403a69cdc292a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"a147998c06734efda8eb41e34fb5673c": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"03efb2c7461e43719207cc68a659606d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"4fade87fc571412c94dfd3251e26231e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_3bd30c2960e24d73864981900f4f00cb",
"IPY_MODEL_9d82c63b57f0431ba331e2c99ffbd9f4",
"IPY_MODEL_cb2fe6ef64f54657a175170189a56f5f"
],
"layout": "IPY_MODEL_a97a2de4652a4dc6afa037dc9cae9df5"
}
},
"3bd30c2960e24d73864981900f4f00cb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_8a03a101cb99497cb08755e107fd93f1",
"placeholder": "",
"style": "IPY_MODEL_cd56da15f6eb46548f8c398424b4cbdd",
"value": "Downloading (…)solve/main/vocab.txt: 100%"
}
},
"9d82c63b57f0431ba331e2c99ffbd9f4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d022ebf64d0c487f931ad0e74633a5af",
"max": 231508,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_1ab588b5fd854ec398cc07ef39521917",
"value": 231508
}
},
"cb2fe6ef64f54657a175170189a56f5f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_55a8d979263e49d4ab5ee667826d83da",
"placeholder": "",
"style": "IPY_MODEL_74726533f84141149d206cc4db238b37",
"value": " 232k/232k [00:00<00:00, 1.89MB/s]"
}
},
"a97a2de4652a4dc6afa037dc9cae9df5": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8a03a101cb99497cb08755e107fd93f1": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cd56da15f6eb46548f8c398424b4cbdd": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d022ebf64d0c487f931ad0e74633a5af": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1ab588b5fd854ec398cc07ef39521917": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"55a8d979263e49d4ab5ee667826d83da": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"74726533f84141149d206cc4db238b37": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"6e86fd6a1b564a71b3c536e0a55fc269": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_cd028e6354264a28b1a93ac4c67a2944",
"IPY_MODEL_46ff8af1aae645d5b17b78dbac42bd81",
"IPY_MODEL_185f8e47950d46a8af69a39e122fccef"
],
"layout": "IPY_MODEL_c4b01d794a36499a9675eae9575aa891"
}
},
"cd028e6354264a28b1a93ac4c67a2944": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_3dab7317b88e400a8cde43513efeb8a2",
"placeholder": "",
"style": "IPY_MODEL_003262cbb6584759b2d22bf2ce385e60",
"value": "Downloading (…)/main/tokenizer.json: 100%"
}
},
"46ff8af1aae645d5b17b78dbac42bd81": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_171cb07f3a4342eda4a003ccbc1b2acb",
"max": 711661,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_9ab1c63de21e4573ab4d539cb0fae82c",
"value": 711661
}
},
"185f8e47950d46a8af69a39e122fccef": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_eaa27854da9e4cf1a79e3e731a604aeb",
"placeholder": "",
"style": "IPY_MODEL_79fb6b1657814f4bad5ca8c3f1bd1a60",
"value": " 712k/712k [00:00<00:00, 11.1MB/s]"
}
},
"c4b01d794a36499a9675eae9575aa891": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3dab7317b88e400a8cde43513efeb8a2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"003262cbb6584759b2d22bf2ce385e60": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"171cb07f3a4342eda4a003ccbc1b2acb": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9ab1c63de21e4573ab4d539cb0fae82c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"eaa27854da9e4cf1a79e3e731a604aeb": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"79fb6b1657814f4bad5ca8c3f1bd1a60": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"2bef2d792e464deeb8d3847d5848215e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_9638a9024163426db01f0adcfb3f3767",
"IPY_MODEL_a5b6b1a7e0214d9e9d11c0eef11d13f1",
"IPY_MODEL_805233ffcdf4466b80973f8ae62e16e5"
],
"layout": "IPY_MODEL_e216536da1374602a959158513fe8fe4"
}
},
"9638a9024163426db01f0adcfb3f3767": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d78cccbd8fe84e10a3e1057aeb3b095d",
"placeholder": "",
"style": "IPY_MODEL_43ffca514a2245e49c54d949bdf954f0",
"value": "Downloading (…)cial_tokens_map.json: 100%"
}
},
"a5b6b1a7e0214d9e9d11c0eef11d13f1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e28ad688b3d5406c8f74e81ff984126e",
"max": 125,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_3a6017fd705f48f99af09ecd8d7073dd",
"value": 125
}
},
"805233ffcdf4466b80973f8ae62e16e5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a9762dd720784a0ebd85fa7e4670e840",
"placeholder": "",
"style": "IPY_MODEL_73edb04f2925449bb532394970f994c0",
"value": " 125/125 [00:00<00:00, 5.32kB/s]"
}
},
"e216536da1374602a959158513fe8fe4": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d78cccbd8fe84e10a3e1057aeb3b095d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"43ffca514a2245e49c54d949bdf954f0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e28ad688b3d5406c8f74e81ff984126e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3a6017fd705f48f99af09ecd8d7073dd": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"a9762dd720784a0ebd85fa7e4670e840": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"73edb04f2925449bb532394970f994c0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kP0lmaQUs6qk"
},
"outputs": [],
"source": [
"%%time\n",
"\n",
"! pip install -qq -U langchain youtube_transcript_api einops\n",
"! pip install -qq -U accelerate bitsandbytes xformers"
]
},
{
"cell_type": "code",
"source": [
"!pip install transformers"
],
"metadata": {
"id": "i1trQ9PhtqP3"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from IPython.display import YouTubeVideo\n",
"\n",
"from langchain.document_loaders import YoutubeLoader\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.chains import LLMChain\n",
"from langchain.chains.summarize import load_summarize_chain\n",
"from langchain.llms import HuggingFacePipeline\n",
"\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline\n",
"\n",
"import torch\n",
"\n",
"import langchain\n",
"print(langchain.__version__)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "dbG73oiftLsY",
"outputId": "73253040-1352-43a9-a6b1-79bad7d1d948"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"0.0.268\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"loader = YoutubeLoader.from_youtube_url(\"https://www.youtube.com/watch?v=tAuRQs_d9F8&t=52s\")\n",
"transcript = loader.load()"
],
"metadata": {
"id": "By6PQdLet0fH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"transcript"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7Sq-9ntIuSmQ",
"outputId": "4fd90c83-bf9c-49d0-ba2c-854e24fb1d16"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[Document(page_content=\"I heard you liked factories so I made you a factory inside a factory which inherits from an abstract Factory so it can create new factories but enough about programming in Java in this video we will learn about eight design patterns every developer should know in 1994 the gang of four released the holy book design patterns introducing 23 object-oriented design patterns falling into one of three buckets creational patterns structural patterns and behavioral patterns while some argue that it stated the fact that a 30 year old book is still being discussed definitely means something especially in a world where JavaScript Frameworks are going out of style faster than you can say JavaScript was a mistake anyways let's start with our first creational pattern the factory imagine that you want a burger but you don't want to have to worry about getting all the ingredients and putting them together so instead you just order a burger well we can do the same thing with code if it takes a list of ingredients to create a burger we can instead use a factory which will instantiate the burger for us and return it to us whether it's a cheeseburger a deluxe cheeseburger or even a vegan burger all we have to do is tell the factory what kind of burger we want just like you would do at a restaurant but be careful because this way you'll never know what's inside the Special Sauce we added a secret ingredient now alternatively if you want a little more control over how the sausage is made you can go with the builder pattern the idea is that if we want to make a burger we don't immediately have to pass in all the parameters we can use a burger Builder instead we'll have an individual method for adding each ingredient whether it's a bun Patty or cheese each one will return a reference to the Builder and finally we'll have a build method which will return the final product then we can instantiate a burger Builder add the Buns that we want the Patty that we want and the cheese that we want and we can chain these methods because remember each one will return a reference to the Builder finally we can build it and we have the exact burger that we want I've used this pattern a lot at Google with protocol buffers next we have the Singleton pattern and I'm not talking about my dating life a Singleton is just a class that can only have a single instance of it that's instantiated it has many use cases for example maintaining a single copy of our application stay we would start by having a static instance variable let's say in our app we want to know if a user is logged in or not but we won't use the Constructor to actually instantiate the application State we'll use a static method called get app stay which will first check if there's already an existing instance of our application stay if not we'll instantiate one if there already is though we'll just return the existing instance we'll never create more than one so now if we get our app State for the first time the logged in value will initially be false but if we get the app State again this will actually still be the first instance so if we modify the first instance and then print the logged in value for both of them they will both now be true this pattern can be useful so that multiple components in your app will have a a shared source of truth but how can all the components listen for updates in real time well that's where the Observer comes in our first behavioral pattern I prefer to call it the pub sub pattern it's widely used Beyond just object-oriented programming including in distributed systems let's take YouTube for example every time I upload a video all of my subscribers get a notification including you because you're subscribed right but in this case the YouTube channel is the subject AKA publisher which will be the source of events such as a new video being uploaded we might want multiple observers AKA subscribers to all be notified when these events happen in real time one way to implement this pattern is to have a YouTube channel class which maintains a list of its subscribers when a new user subscribes we add them to the list of subscribers when an event occurs we go through that list of subscribers and send the event data to each of them with a notification but we also have to define the subscriber interface which you can do with an abstract class or an interface different subscribers might implement this interface differently but for a YouTube user let's say that we just want to print the notification that was received so then we can create a YouTube channel add a few subscribers and we only have to call notify once and all of the subscribers will receive the notification this is also extensible enough that a subscriber could be subscribed to multiple channels an iterator is a pretty simple pattern that defines how the values in an object can be iterated through in Python just defining an array and then iterating through it with the in keyword uses the built-in list iterator this way we don't even have to index the array now for more complex objects like binary search trees or linked lists we can Define our own we can take a list node which just has a value and a next pointer and then a linked list which has a head pointer and a current pointer we can first Define the iterator with the inner function which will just set the current pointer to the head and then return a reference to the linked list to get the next value in the sequence we defined the next function if our current pointer is non-null we can get the value and then return it and also shift the current pointer but if we reach the end of the linked list we can send a signal that we're going to stop iterating to test it out we can just initialize the linked list and iterate through it with the in keyword this is a much more simple interface than having to actually update pointers ourselves now if you want to modify or extend the behavior of a class without directly changing it you can go with the strategy pattern for example we can filter an array by removing positive values or we could filter it by removing all odd values these are two strategies but maybe in the future we want to add more and we want to follow the open closed principle well we can define a filter strategy create an implementation which will remove all negative values and an implementation which will remove all odd values and then at run time we can pass this strategy into our values object and to test it out all we have to do is pass in the strategy into our filter method and we'll get our desired result this way we can add additional strategies without modifying our values class next we have the adapter our first structural pattern it's analogous to the real world where we have a screw that's too small to fit into a hole so instead we use an adapter which makes this screw compatible with the hole or maybe an example that you're more familiar with we have a USB cable and a USB port we can plug in the USB cable which will directly fit into the port but instead if we have a micro USB cable it's not compatible so instead we need a micro to USB adapter which extends from the USB clasp but is composed of a micro USB cable which will be plugged into the adapter we can override the plug USB method from our parent class if needed but it's not in this case and then we can plug our micro USB cable into the adapter and then plug it into the port and it works just like a regular USB cable and our last pattern is the facade according to the dictionary a facade is an outward appearance that is maintained to conceal a Less Pleasant or credible reality in the program programming world the outward appearance is the class or interface we interact with as programmers and the Less Pleasant reality is hopefully the complexity that is hidden from us so a facade is simply a rapper class that can be used to abstract lower level details that we don't want to have to worry about I'm surprised it even qualifies as a design pattern but some common examples might include HTTP clients that abstract away low-level Network details or even arrays yes a dynamic array like vectors in C plus plus or arraylists in Java are constantly being resized under the hood thankfully as programmers we rarely have to think about memory allocation though if you're interested to learn more check out my newly released object-oriented design interview course we tackle some popular interview questions I've included video less since written articles and code for four languages and I'll be sure to add additional lessons in the future thanks for watching and make sure to subscribe please\", metadata={'source': 'tAuRQs_d9F8'})]"
]
},
"metadata": {},
"execution_count": 5
}
]
},
{
"cell_type": "code",
"source": [
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=50)\n",
"texts = text_splitter.split_documents(transcript)"
],
"metadata": {
"id": "lX6YQ6xDuWMQ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"%%time\n",
"\n",
"model_repo = 'bigscience/bloom-560m'\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_repo)\n",
"\n",
"model = AutoModelForCausalLM.from_pretrained(model_repo,\n",
" load_in_8bit=True,\n",
" device_map='auto',\n",
" torch_dtype=torch.float16,\n",
" low_cpu_mem_usage=True,\n",
" trust_remote_code=True\n",
" )\n",
"max_len = 2048 # 1024\n",
"task = \"text-generation\"\n",
"T = 0"
],
"metadata": {
"id": "D0ja3l8iua0w",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 378,
"referenced_widgets": [
"b1957e522dd54dbeb9ef6eb9fa7f3890",
"fc5fcb2c5ebf49039e4e929584862190",
"337acbefe08747bf8364f30360a8b656",
"10d2b6765d584f31bad990e61777cf77",
"9508600d824b482a81524079bb235794",
"cb0541aef16b403387b9c657b0ef0c24",
"4b7d598ecf6e40319a0d6d33dafefa0b",
"9bc7dfab3fb54c4383478ae06955d930",
"43a896f9e9734824ba4e180f325e9ffe",
"aa0baa87e92641eba51acd3beb51ff8b",
"69723330251b48eaa3f2bd7ca74ca504",
"7d2660d25a3b4795ad52102e47da21f1",
"3a89d3b325bd430b8fc84830e67da29f",
"6d547b31a7674b018f5465ac490ba7c1",
"90bd165c250549c195ee38dbe62072e0",
"72e84a86cb9a4a1d8dd67b9863769475",
"59025a9a25e5454a84542f03e58e5e2a",
"2a8656a4be29476089cad73ce9430269",
"73c729434fa043bba198dffe43d79195",
"9bcff2ba4e0a4ba5be4e2ce9b6a8168f",
"4c81b194a5494c69af637f0e2021a89b",
"63a1021b09744473b5c0cc4807056873",
"1dab82698b734042966b7a3690bf957a",
"00da4c063b8f41a28a3db4ac4ab71f12",
"67fab623c149486b827454857b11f43b",
"dcef901cd3564cdca7abb6637401c521",
"d0545a36f2da43ce890e00704ffab923",
"0f6f731781cf4596b6590ae631bfa940",
"afcfc89bf5434eb394a51a8678203f05",
"052c36d6bb6f4600baa8e757ba54746b",
"d4b32645efae4fa3bd20ece031216126",
"bcaa7537d9be4828a90a0757d454ace2",
"1ddf8227240d43c2919bcea03e50b924",
"eb2f03c2a6464c719904d0b0f7fc7626",
"32d30fd9c1524c8a80bc96df1e23c036",
"3e885a0c0d734961aa5f05646814f506",
"dc0966fee5524fcb855ff3c2b79defe9",
"d0a43d72a9c54bd089782b9994c6cb0e",
"b5c4f0046a9644c2b8dbe47118af259e",
"fd574f9e2a474b4c9bc7cc114e6bd5ab",
"aa0cc94fe47f470f9bb3b340fb909b88",
"1384342fab904fb49e9dedae2d48c07d",
"d61a5b7cc77e4d958bdc0842e844101c",
"a1773aab0d824cf89821f2d3422d4f84",
"3d5283e9ca3e4acfb85cac9fb307a00f",
"8ec591dde20e444d916abb377ae2c9e4",
"a932c62e80c54f439bd6154248b91397",
"8fbd8626812d4187a84c96b3cad1c42c",
"a11386f0e2d34e3da6faa78247f4743b",
"41dc540a879845f9be713c37ccdef601",
"d7ddd2a2c3544b109beffd33f686ed81",
"b5c2194abb1947d5a40c2c26d01051f3",
"60601bd310754530851a54ebfa909d0b",
"f11a639f453c4bd8b951b5877eb6d764",
"64a158c75fc94f8780ae94b1f21206f7"
]
},
"outputId": "61b5a750-aad5-4b7c-f43b-ccb1853d2c3b"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)okenizer_config.json: 0%| | 0.00/222 [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "b1957e522dd54dbeb9ef6eb9fa7f3890"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading tokenizer.json: 0%| | 0.00/14.5M [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "7d2660d25a3b4795ad52102e47da21f1"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)cial_tokens_map.json: 0%| | 0.00/85.0 [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "1dab82698b734042966b7a3690bf957a"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)lve/main/config.json: 0%| | 0.00/693 [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "eb2f03c2a6464c719904d0b0f7fc7626"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading model.safetensors: 0%| | 0.00/1.12G [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "3d5283e9ca3e4acfb85cac9fb307a00f"
}
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Some weights of BloomForCausalLM were not initialized from the model checkpoint at bigscience/bloom-560m and are newly initialized: ['lm_head.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"CPU times: user 26.7 s, sys: 3.62 s, total: 30.3 s\n",
"Wall time: 52.3 s\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"pipe = pipeline(\n",
" task=task,\n",
" model=model,\n",
" tokenizer=tokenizer,\n",
" max_length=max_len,\n",
" temperature=T,\n",
" top_p=0.95,\n",
" repetition_penalty=1.15,\n",
" pad_token_id = 11\n",
")\n",
"\n",
"llm = HuggingFacePipeline(pipeline=pipe)"
],
"metadata": {
"id": "BHDardMpu2-p"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"chain = load_summarize_chain(llm=llm, chain_type=\"map_reduce\", verbose=True)"
],
"metadata": {
"id": "X5RmkFeMwu9i"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"chain"
],
"metadata": {
"id": "R1235YVmwxgw",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c946db5f-2a7b-44e8-d7ae-e1e16aa916c0"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"MapReduceDocumentsChain(memory=None, callbacks=None, callback_manager=None, verbose=True, tags=None, metadata=None, input_key='input_documents', output_key='output_text', llm_chain=LLMChain(memory=None, callbacks=None, callback_manager=None, verbose=True, tags=None, metadata=None, prompt=PromptTemplate(input_variables=['text'], output_parser=None, partial_variables={}, template='Write a concise summary of the following:\\n\\n\\n\"{text}\"\\n\\n\\nCONCISE SUMMARY:', template_format='f-string', validate_template=True), llm=HuggingFacePipeline(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, pipeline=, model_id='gpt2', model_kwargs=None, pipeline_kwargs=None), output_key='text', output_parser=StrOutputParser(), return_final_only=True, llm_kwargs={}), reduce_documents_chain=ReduceDocumentsChain(memory=None, callbacks=None, callback_manager=None, verbose=True, tags=None, metadata=None, input_key='input_documents', output_key='output_text', combine_documents_chain=StuffDocumentsChain(memory=None, callbacks=None, callback_manager=None, verbose=True, tags=None, metadata=None, input_key='input_documents', output_key='output_text', llm_chain=LLMChain(memory=None, callbacks=None, callback_manager=None, verbose=True, tags=None, metadata=None, prompt=PromptTemplate(input_variables=['text'], output_parser=None, partial_variables={}, template='Write a concise summary of the following:\\n\\n\\n\"{text}\"\\n\\n\\nCONCISE SUMMARY:', template_format='f-string', validate_template=True), llm=HuggingFacePipeline(cache=None, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, pipeline=, model_id='gpt2', model_kwargs=None, pipeline_kwargs=None), output_key='text', output_parser=StrOutputParser(), return_final_only=True, llm_kwargs={}), document_prompt=PromptTemplate(input_variables=['page_content'], output_parser=None, partial_variables={}, template='{page_content}', template_format='f-string', validate_template=True), document_variable_name='text', document_separator='\\n\\n'), collapse_documents_chain=None, token_max=3000), document_variable_name='text', return_intermediate_steps=False)"
]
},
"metadata": {},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"source": [
"### default prompt template\n",
"chain.llm_chain.prompt.template"
],
"metadata": {
"id": "aSpnfJLGwzZD",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"outputId": "892980e1-1ba5-4a3e-b2e0-91af35433a3c"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'Write a concise summary of the following:\\n\\n\\n\"{text}\"\\n\\n\\nCONCISE SUMMARY:'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 21
}
]
},
{
"cell_type": "code",
"source": [
"%%time\n",
"\n",
"# Run the chain with verbose=True\n",
"summary = chain.run(texts)\n",
"summary"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000,
"referenced_widgets": [
"9eff2e79021d467e8fee3c86cbdeae85",
"9e8e939eb7ef47349808ed3d1b6dc4e8",
"591b18e543b44213a8d39b6ff1a0e1b5",
"c59abc1646554c12b2b002c0052a40b6",
"89f6b8cb1b8f44e8b815806674fc1ba5",
"6d0b22a1fb4844b2820e4853507a4fc0",
"4e3569279b4f4fc4897020d9fc25c8b7",
"e60050254b0e47c6bb28893e343b358e",
"c133f47dae7e41b48b3798f212d0d1a0",
"e1e5e9e89f484df382c2e34ad5a45751",
"8ef990a3ccf948e5afd32b63b761e73f",
"d8b4772f7a4340509465aba9d6ed6e32",
"294d90574705409ebcdc51c4cf57ac85",
"cf7aab67128d4efda9560e0c2faf9eea",
"c3fc52a176214f269077ba96dc4d3d85",
"3adcc9d23e704d37bf726c188ed26364",
"f99c881ba4034bd8b89eb2b8a687acb1",
"aef7d3d7dc6e4602b45eabd72610a2eb",
"5a9e83b811634e4f8c5f6f563d9240c9",
"27e0d7bbceac4d79ab49e822bf52cf3e",
"4202f988bce64834be53f7946d413bae",
"2d120551cc914fa390af489484643d10",
"16563760f4ea40af99ef5e2cc2b86ee3",
"5df7c7e63dae4f329da244d41d2604b5",
"191a14f06d824d49833efea41e4f53df",
"bd8249c8b35741cfaeb008bd56afe3fb",
"532f46eb1eae4b47a58a460330a251d6",
"cdcbc2416f1041bcbddc20b91cc6161f",
"fb6c331f7d5e4c6795cbdb7f61fdbe29",
"97cdc1b7888a443f8c64a8c14a110e4f",
"e5dd9cca9bfe41d8bcd14c7d5bc70b27",
"e21d185f23724abe9e6739094829c013",
"1513f098a757454595bd2075c9e16860",
"ce42c41c89d648c385947cc4da321f49",
"ceda7bb458e743adbf7cae48df13101a",
"3fdb4575f9354d9f894a92720e14dd7a",
"ced0124dcde4480d9cb32a2108bcd9cc",
"4821d8481e73436c9d53e2af2565198a",
"0f71a0cac56849b9b7149135d20f47f2",
"e91b3949141c41559a70aa48b6463927",
"91974f02945541b2a9b07d07626f2084",
"801d4f64547d4faaa5d9314e1b91238a",
"58ec6959873c4482863047137aebe234",
"74b7cddac51140a68d746503d80f42f8"
]
},
"id": "FseJIxPkw4A3",
"outputId": "0b68e2d4-f406-4b6b-dc3b-d3388c2777d4"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new MapReduceDocumentsChain chain...\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mWrite a concise summary of the following:\n",
"\n",
"\n",
"\"I heard you liked factories so I made you a factory inside a factory which inherits from an abstract Factory so it can create new factories but enough about programming in Java in this video we will learn about eight design patterns every developer should know in 1994 the gang of four released the holy book design patterns introducing 23 object-oriented design patterns falling into one of three buckets creational patterns structural patterns and behavioral patterns while some argue that it stated the fact that a 30 year old book is still being discussed definitely means something especially in a world where JavaScript Frameworks are going out of style faster than you can say JavaScript was a mistake anyways let's start with our first creational pattern the factory imagine that you want a burger but you don't want to have to worry about getting all the ingredients and putting them together so instead you just order a burger well we can do the same thing with code if it takes a list of ingredients to create a burger we can instead use a factory which will instantiate the burger for us and return it to us whether it's a cheeseburger a deluxe cheeseburger or even a vegan burger all we have to do is tell the factory what kind of burger we want just like you would do at a restaurant but be careful because this way you'll never know what's inside the Special Sauce we added a secret ingredient now alternatively if you want a little more control over how the sausage is made you can go with the builder pattern the idea is that if we want to make a burger we don't immediately have to pass in all the parameters we can use a burger Builder instead we'll have an individual method for adding each ingredient whether it's a bun Patty or cheese each one will return a reference to the Builder and finally we'll have a build method which will return the final product then we can instantiate a burger Builder add the Buns that we want the Patty that we want and the cheese that we want and\"\n",
"\n",
"\n",
"CONCISE SUMMARY:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mWrite a concise summary of the following:\n",
"\n",
"\n",
"\"that we want and the cheese that we want and we can chain these methods because remember each one will return a reference to the Builder finally we can build it and we have the exact burger that we want I've used this pattern a lot at Google with protocol buffers next we have the Singleton pattern and I'm not talking about my dating life a Singleton is just a class that can only have a single instance of it that's instantiated it has many use cases for example maintaining a single copy of our application stay we would start by having a static instance variable let's say in our app we want to know if a user is logged in or not but we won't use the Constructor to actually instantiate the application State we'll use a static method called get app stay which will first check if there's already an existing instance of our application stay if not we'll instantiate one if there already is though we'll just return the existing instance we'll never create more than one so now if we get our app State for the first time the logged in value will initially be false but if we get the app State again this will actually still be the first instance so if we modify the first instance and then print the logged in value for both of them they will both now be true this pattern can be useful so that multiple components in your app will have a a shared source of truth but how can all the components listen for updates in real time well that's where the Observer comes in our first behavioral pattern I prefer to call it the pub sub pattern it's widely used Beyond just object-oriented programming including in distributed systems let's take YouTube for example every time I upload a video all of my subscribers get a notification including you because you're subscribed right but in this case the YouTube channel is the subject AKA publisher which will be the source of events such as a new video being uploaded we might want multiple observers AKA subscribers to all be notified when these events\"\n",
"\n",
"\n",
"CONCISE SUMMARY:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mWrite a concise summary of the following:\n",
"\n",
"\n",
"\"subscribers to all be notified when these events happen in real time one way to implement this pattern is to have a YouTube channel class which maintains a list of its subscribers when a new user subscribes we add them to the list of subscribers when an event occurs we go through that list of subscribers and send the event data to each of them with a notification but we also have to define the subscriber interface which you can do with an abstract class or an interface different subscribers might implement this interface differently but for a YouTube user let's say that we just want to print the notification that was received so then we can create a YouTube channel add a few subscribers and we only have to call notify once and all of the subscribers will receive the notification this is also extensible enough that a subscriber could be subscribed to multiple channels an iterator is a pretty simple pattern that defines how the values in an object can be iterated through in Python just defining an array and then iterating through it with the in keyword uses the built-in list iterator this way we don't even have to index the array now for more complex objects like binary search trees or linked lists we can Define our own we can take a list node which just has a value and a next pointer and then a linked list which has a head pointer and a current pointer we can first Define the iterator with the inner function which will just set the current pointer to the head and then return a reference to the linked list to get the next value in the sequence we defined the next function if our current pointer is non-null we can get the value and then return it and also shift the current pointer but if we reach the end of the linked list we can send a signal that we're going to stop iterating to test it out we can just initialize the linked list and iterate through it with the in keyword this is a much more simple interface than having to actually update pointers ourselves now if\"\n",
"\n",
"\n",
"CONCISE SUMMARY:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mWrite a concise summary of the following:\n",
"\n",
"\n",
"\"to actually update pointers ourselves now if you want to modify or extend the behavior of a class without directly changing it you can go with the strategy pattern for example we can filter an array by removing positive values or we could filter it by removing all odd values these are two strategies but maybe in the future we want to add more and we want to follow the open closed principle well we can define a filter strategy create an implementation which will remove all negative values and an implementation which will remove all odd values and then at run time we can pass this strategy into our values object and to test it out all we have to do is pass in the strategy into our filter method and we'll get our desired result this way we can add additional strategies without modifying our values class next we have the adapter our first structural pattern it's analogous to the real world where we have a screw that's too small to fit into a hole so instead we use an adapter which makes this screw compatible with the hole or maybe an example that you're more familiar with we have a USB cable and a USB port we can plug in the USB cable which will directly fit into the port but instead if we have a micro USB cable it's not compatible so instead we need a micro to USB adapter which extends from the USB clasp but is composed of a micro USB cable which will be plugged into the adapter we can override the plug USB method from our parent class if needed but it's not in this case and then we can plug our micro USB cable into the adapter and then plug it into the port and it works just like a regular USB cable and our last pattern is the facade according to the dictionary a facade is an outward appearance that is maintained to conceal a Less Pleasant or credible reality in the program programming world the outward appearance is the class or interface we interact with as programmers and the Less Pleasant reality is hopefully the complexity that is hidden from us so a facade is\"\n",
"\n",
"\n",
"CONCISE SUMMARY:\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mWrite a concise summary of the following:\n",
"\n",
"\n",
"\"complexity that is hidden from us so a facade is simply a rapper class that can be used to abstract lower level details that we don't want to have to worry about I'm surprised it even qualifies as a design pattern but some common examples might include HTTP clients that abstract away low-level Network details or even arrays yes a dynamic array like vectors in C plus plus or arraylists in Java are constantly being resized under the hood thankfully as programmers we rarely have to think about memory allocation though if you're interested to learn more check out my newly released object-oriented design interview course we tackle some popular interview questions I've included video less since written articles and code for four languages and I'll be sure to add additional lessons in the future thanks for watching and make sure to subscribe please\"\n",
"\n",
"\n",
"CONCISE SUMMARY:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)olve/main/vocab.json: 0%| | 0.00/1.04M [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "9eff2e79021d467e8fee3c86cbdeae85"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)olve/main/merges.txt: 0%| | 0.00/456k [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "d8b4772f7a4340509465aba9d6ed6e32"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)/main/tokenizer.json: 0%| | 0.00/1.36M [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "16563760f4ea40af99ef5e2cc2b86ee3"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)lve/main/config.json: 0%| | 0.00/665 [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "ce42c41c89d648c385947cc4da321f49"
}
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Token indices sequence length is longer than the specified maximum sequence length for this model (5664 > 1024). Running this sequence through the model will result in indexing errors\n",
"Token indices sequence length is longer than the specified maximum sequence length for this model (1938 > 1024). Running this sequence through the model will result in indexing errors\n",
"Token indices sequence length is longer than the specified maximum sequence length for this model (2427 > 1024). Running this sequence through the model will result in indexing errors\n",
"Token indices sequence length is longer than the specified maximum sequence length for this model (5216 > 1024). Running this sequence through the model will result in indexing errors\n",
"Token indices sequence length is longer than the specified maximum sequence length for this model (3125 > 1024). Running this sequence through the model will result in indexing errors\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new StuffDocumentsChain chain...\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mWrite a concise summary of the following:\n",
"\n",
"\n",
"\"\n",
"\n",
"1. The concept behind these designs has been very simple, they were designed by people who had no clue as much time spent on designing software.\n",
"2. They didn't require many changes when compared other languages such as:\n",
"Java, C# etc.. 3.\n",
"They did not need special tools (such : IDE) 4.\n",
"\n",
"A:\n",
"\n",
"(I am using JDK 1)\n",
"The following example shows why your class doesn't work properly. \n",
"public interface Furniture {\n",
" void Add(FancyBread b)\n",
" public static bool IsAddableToThisClass();\n",
"\n",
" // This function returns true iff there exists another instance.\n",
" private Boolean HasOtherInstance = false; \n",
" \n",
" /**\n",
" * Returns false.\n",
" */ \n",
" /// Returns null otherwise \n",
" [System] \n",
" protected virtual Object GetObjectByID()\n",
" {return null;} \n",
"\n",
" #region Constructors & Destructor\n",
" \n",
" /*\n",
" ** Constructor.\n",
" **/ \n",
" public:\n",
" //this constructor creates two instances.\n",
" int iid;\n",
"\n",
" #endregion\n",
" \n",
"\n",
"\n",
" private:\n",
" internal readonly List itemsList=new ArrayList () ;\n",
"\n",
" /****************************************************/\n",
" \n",
" - Methods:\n",
" CreateFactoryAndReturnBuilder\n",
"\n",
" -----------------------//\n",
" \n",
" (Constructor)\n",
" \n",
" Public override Type ReturnType\n",
" => typeof ((FoodContainer))\n",
" \n",
" \n",
"\n",
" Private Function NewItemFromArrayOfItems\n",
" \n",
" --------->\n",
" Helper function:\n",
" var item=new Foodcontainer{\n",
" Name={Name1},\n",
" Weight=100,\n",
" Height=10,\n",
" };\n",
" \n",
" }\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"\n",
" \n",
" \n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
"\n",
" \n",
"\n",
" \n",
"\n",
" \n",
" \n",
"\n",
"\n",
" \n",
"\n",
"\n",
"\n",
"The following are some common patterns, however most people don't understand what they're doing. The reason why isn't really clear.\n",
"First off let me explain what's happening here\n",
"In order make sure we're getting any notifications from other objects (evaluations) on certain properties like statuses etc., we've got two things going on: 1.) We need something similar to: \n",
"public void notify(String title)\n",
"{\n",
" // do stuff\n",
"\n",
" String message = \"Message\";\n",
" \n",
" try {\n",
" Message msg;\n",
"\n",
" SystemClock clock1=new TimeZone() ;\n",
" \n",
" ClockSystem systemclock1=new DefaultTimeZonesystem().getDefaultTimeZoneForCurrentUser( );//this should work fine!.\n",
" int seconds=systemtime2seconds( (int)(0))+((long)((double) (seconds/60*1000))) + ((float) ((Mathf * 0), Mathfs::EPSILON) ) - 60000;//we'll set up minutes/minutes since midnight.\n",
"\n",
" DateTime dateTime; \n",
" DateFormat formatter=null,\n",
" formatDateTime=function (){return DoubleToDateFormatterFactory.formatDouble( \n",
" (date-time).getTime());},\n",
" parseText=true, \n",
"\n",
" textFieldName=\"title\"]; \n",
" \n",
" ...\n",
" } catch(...){}\n",
" \n",
" }catch(...)\n",
" {}\n",
" \n",
" \n",
"}\"\n",
"\n",
"\n",
"CONCISE SUMMARY:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new StuffDocumentsChain chain...\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mWrite a concise summary of the following:\n",
"\n",
"\n",
"\"\n",
"\n",
"The following code snippet shows what happens on every subscribe() method. The main idea here is:\n",
"class Subscriber(object) :\n",
" def __init__ (self, name = None, emailAddressesList=None ) {\n",
" self.name \t\t\t\t= name;\n",
"\t\tif not isinstance((emailaddresselist, )) \n",
"\t\t\traise TypeError, ('Email addresses',)*[ ] * [] \n",
"\t\tsuper().__init__ ();\n",
"\t}\n",
"\n",
" # This line sets up some variables used by other methods.\n",
" __setattr__ \t \t# Set attributes from another instance \n",
" @staticmethod \t\tdef _notifySubscribeEvent\t(eventType, \n",
" subscriptionId,\n",
" messageText='')\n",
" \"\"\"This returns true iff there are any notifications sent about \"subscribe_events\"\"\"\"\n",
" \n",
" @classproperty \t\t\t@abstractprotected \t \t \n",
" @property \t\t\t\t\t\t \n",
" public \t\t\t\t\t \t \t\t \n",
" Email addressesList;\n",
"\n",
" @static \t\tpublic \t\n",
"\tprivate static final int NO_SUBSCRIBER_EVENTS=0;\n",
"\n",
"\t/** \n",
"\t** Constructor.\n",
"\t*/ \n",
" private SubregisterListener( ){ }\n",
" \n",
" /** \n",
" ** Destructor.\n",
" */ \n",
" protected override void cleanup ( ) {}\n",
"\t\n",
"\t// ---------------------------------------------------------------------------------------\n",
" // Methods related to: Events - Notifications\n",
"\n",
" /*----------------------------------------------------------------------------\n",
" Function Name: EventManager_NotifySubscriptionEvents \n",
" Method Desc: Returns True If There Are Any Notification Sent About \"Subscription-events\"; Defaults To False.\n",
" Parameters Type: Integer. \n",
" Return Value:- Boolean. \n",
" @param type type: String.\n",
" @return boolean value: 'True' \n",
" @throws Exception thrown during processing.\n",
" When 'NO_SUBBRING_NOTIFICATIONS' Is In Use. \n",
" It Should Be Used With A List Of Objects Like Binary Search Trees; Linked Lists Or Array Elements.\n",
" **/\n",
" \t/*-------------------------------------------------------------\n",
" \tFunction Name:: GetNotificationCountForSubscriptions \n",
" ClassName: ChannelNotifier, \n",
" Description: Gets NumberOf Unsubscriptions Received For Each New User Created On YoutubeChannel\n",
"\t \t\t\t\t\t\t\t\t\t\t\t\t\t\t\tBy Using An AbstractClass Called as Receiver.\n",
" Parameter Types are: \n",
" 1.\tInteger.\n",
" 2. \n",
" 3. \n",
" 4. 5. 6. 7. 8.\n",
" 9. 10.\n",
" 11. 12.\n",
"\n",
" 13. 14.\n",
"\t\t15. 16\n",
"\n",
"\t\t17 18\n",
"\n",
" 19 20\n",
"\t\t\n",
"\t\t21 21\n",
" \n",
" 22 23\n",
" 24 25\n",
" 26 27\n",
" 28 29\n",
"\n",
" 30 31\n",
" 32 33\n",
" 34 35\n",
" 36 37\n",
" 38 40\n",
"\n",
" 41 42\n",
"\n",
" 43 44\n",
"\n",
" 45 46\n",
"\n",
" 47 48\n",
"\n",
" 49 50\n",
"\n",
" 51 52\n",
"\n",
" 53 54\n",
"\n",
" 55 56\n",
"\n",
"\t\t\t 57 58\n",
"\n",
"\t\t\t\t 59 60\n",
"\n",
" 61 62\n",
"\n",
" 63 64\n",
" 65 66\n",
" 67 68\n",
" 69 70\n",
" 71 72\n",
" 73 74\n",
" 75 76\n",
" 77 78\n",
"\n",
"\t\t\t\t\t78 79\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" ========================================================================\n",
" \n",
"\"\n",
"\n",
"\n",
"CONCISE SUMMARY:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new StuffDocumentsChain chain...\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mWrite a concise summary of the following:\n",
"\n",
"\n",
"\"\n",
"\n",
"1. The concept behind any design patterns approach should always include some kind\n",
"of concisely stated goal, i.\n",
"e., what does your application require? 2. What would make sense?\n",
"3 How much effort (or cost) might I put on implementing my solution? \n",
"4. Is there anything else besides code?\n",
"\n",
"A:\n",
"\n",
"(I think)\n",
"The best thing about using declarative languages such as: Java,\n",
"C#, etc...etc...\n",
"Is they allow me to: \n",
"\n",
"define classes/interfaces \n",
"implement methods / functions \n",
"modify them dynamically based upon their needs.\n",
"\n",
"In other words, \n",
"you don't write new interfaces; rather,your compiler creates one. \n",
"You only change its name when necessary. \n",
"\n",
"So basically :)\n",
"\n",
"Use Declarations - This allows you: \n",
"\n",
"Define Classes/Interfaces. \n",
"Modify Classes and/or Implementers. \n",
"\n",
"This also means that: \n",
"\n",
"Your Programs must conforming rules regarding inheritance. \n",
"(this may seem obvious since most people know how many things inherit).\n",
"But really no matter who wrote those declarations ;) \n",
"They MUST BE CONFORMING. \n",
" So even though someone has written something like: \n",
" public abstract void foo() { }\n",
"\n",
" // You still can't call static members because they're declared private.\n",
" protected final int bar = 0;\n",
"\n",
"\n",
"\n",
"The following simple example shows how you could use an interface with multiple methods. The method has two parameters, one int which represents its value (the first parameter) while another string representing what should happen when called.\n",
"In this case I would call\n",
"int main(String[] args)\n",
"{\n",
" String s = \"123\";\n",
"\n",
" System2 i1(); // returns 1.\n",
" i1().setIntValue((Integer)(s));// sets integer's second argument into variable s2.\n",
"\n",
" return 0;// calls function on s1.\n",
"\n",
"}\"\n",
"\n",
"\n",
"CONCISE SUMMARY:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mWrite a concise summary of the following:\n",
"\n",
"\n",
"\" \n",
"\n",
"You can see that this is working because we have an object with name and value which contains both string values in it. So if you want to add or remove one property at once then just do: \n",
"new ItemWithStatusProperty(\n",
" new MyData(), \n",
" \"MyName\", \n",
" \"MyValue\"\n",
")\n",
"\n",
"\n",
" ------------------- \n",
"1.) We have to add an event listener for each new subscriber created in our channel. \n",
"2.) Every time we send notification it will be added and notified with this information.\n",
"\n",
"3.)\n",
"We can also use these events when creating subscribers that don't exist yet. \n",
"\n",
"4.).\n",
"If you want us notify all users who registered your channels then just call this: \n",
"subscription_id := 0; \n",
"\n",
"5).\n",
"You should check if there's already one or more subsubscribers: \n",
"for i=0 ; i Finished chain.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"CPU times: user 3min 42s, sys: 1.02 s, total: 3min 43s\n",
"Wall time: 4min 4s\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'\\n\\nThe following code snippet creates three subscription records. The first record has status = \"Active\";\\nthe second, third are not active.\\nIn order to: create any other type (evaluated) subscribe on another group I would like my method as follows: \\n\\npublic void CreateSubscription(string id)\\n{\\n Subscription s=new Subscriptions();\\n\\n // Add some data here.\\n var item=SubscriberFactory\\n .CreateItemFromUserIdAndName(\\n Id,\\n Name\\n );//This line adds items from User ID/name field\\n foreach((var x : NewSubItems)\\n {\\n try \\n //to make sure there isn\\'t anything wrong.\\n ConsoleWriter\\n < \\n (int)(DateTimeOffset).Now - DateTimeSpan\\n .Parse(\\n Convert\\n (\\n ToDate\\n , (object)\\n ),\\n null))\\n .WaitUntilCompleted\\n )\\n .GetOrElseThrow(()=>null)\\n ;;\\n\\n consoleOutput(\\n \"Subscribe successfully!\\\\n\"\\n );}\\n\\n }\\n .....\\n}'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 12
}
]
},
{
"cell_type": "code",
"source": [
"import locale\n",
"\n",
"locale.getpreferredencoding = lambda: \"UTF-8\""
],
"metadata": {
"id": "_PXhA6TR0zZC"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"! pip install transformers"
],
"metadata": {
"id": "IMwAiiGkybRK",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "f6049303-0f93-4ea3-a1cb-7307526a4431"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: transformers in /usr/local/lib/python3.10/dist-packages (4.31.0)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.2)\n",
"Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.16.4)\n",
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.23.5)\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.6.3)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.13.3)\n",
"Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (0.3.2)\n",
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.1)\n",
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (2023.6.0)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.7.1)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.2.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.7.22)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"from transformers import pipeline\n",
"model_checkpoint = \"IProject-10/bert-base-uncased-finetuned-squad2\"\n",
"question_answerer = pipeline(\"question-answering\", model=model_checkpoint)"
],
"metadata": {
"id": "H_XYoxd1SY-r",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 349,
"referenced_widgets": [
"a4e5fd02e6f14545912f0c6d2f5706e3",
"30b8a8d0906d4d3783c92ffd923ca081",
"2fdae47220eb4d1bbaa4cdaf1c7f4809",
"5b80ebc1eaa2444d9dbb6d072581f04c",
"ce03bdc9ad594e14963e0e6710451d9a",
"3eb3a3c1c68f4ca98d3ff0371de49560",
"23665cc7ca524e64aae2510705f9c539",
"0e5cb190b1cf4e70ad0b6117182340d0",
"fe6283477f464a15950b73e176d2a46d",
"b4d6064d5b1143e78c38fc376c140001",
"0427fcaafcb0406fa79cbe84d9bc8f7b",
"57b98b51c71e4b3e9b33d0bd40c87309",
"4e6b84b5132b42559d3917fa42e2198b",
"fceefd0f5c5b4867a078c898ef19719c",
"4630b53b50dd4626a651ab8a570e42b1",
"18f1cf46fc654975ac1a56ef05495c7d",
"06cb95571fa44105b3843016c0361baf",
"62f37a8dd3b64c6da2c52fb6d7b088f2",
"85a99f91ea494110b338f4989c6697b0",
"4cdad64bdfa6415ab2ed7fd216e2cfc9",
"dab8a3597ca347abbdd6713e669d76d3",
"a0627bdbf4054f8eb53bfa879c9612d5",
"544cec58b89c41648fac8e2748a03a7e",
"9e4dc52d95e540e5a8f1be58d2720c9e",
"a8470972ac614ccd886ebe60f938e646",
"d314a920432f457c8f33f0782881476b",
"df7e3a41247244f7999cafbd47346a2b",
"2d4038273f3b42b5a4e115885a35abaa",
"e0ac6862e7f245aeab48a8f0a0adbe85",
"c42901b4b2cb465cabdb0289936e5bdd",
"9347fc438337498980f403a69cdc292a",
"a147998c06734efda8eb41e34fb5673c",
"03efb2c7461e43719207cc68a659606d",
"4fade87fc571412c94dfd3251e26231e",
"3bd30c2960e24d73864981900f4f00cb",
"9d82c63b57f0431ba331e2c99ffbd9f4",
"cb2fe6ef64f54657a175170189a56f5f",
"a97a2de4652a4dc6afa037dc9cae9df5",
"8a03a101cb99497cb08755e107fd93f1",
"cd56da15f6eb46548f8c398424b4cbdd",
"d022ebf64d0c487f931ad0e74633a5af",
"1ab588b5fd854ec398cc07ef39521917",
"55a8d979263e49d4ab5ee667826d83da",
"74726533f84141149d206cc4db238b37",
"6e86fd6a1b564a71b3c536e0a55fc269",
"cd028e6354264a28b1a93ac4c67a2944",
"46ff8af1aae645d5b17b78dbac42bd81",
"185f8e47950d46a8af69a39e122fccef",
"c4b01d794a36499a9675eae9575aa891",
"3dab7317b88e400a8cde43513efeb8a2",
"003262cbb6584759b2d22bf2ce385e60",
"171cb07f3a4342eda4a003ccbc1b2acb",
"9ab1c63de21e4573ab4d539cb0fae82c",
"eaa27854da9e4cf1a79e3e731a604aeb",
"79fb6b1657814f4bad5ca8c3f1bd1a60",
"2bef2d792e464deeb8d3847d5848215e",
"9638a9024163426db01f0adcfb3f3767",
"a5b6b1a7e0214d9e9d11c0eef11d13f1",
"805233ffcdf4466b80973f8ae62e16e5",
"e216536da1374602a959158513fe8fe4",
"d78cccbd8fe84e10a3e1057aeb3b095d",
"43ffca514a2245e49c54d949bdf954f0",
"e28ad688b3d5406c8f74e81ff984126e",
"3a6017fd705f48f99af09ecd8d7073dd",
"a9762dd720784a0ebd85fa7e4670e840",
"73edb04f2925449bb532394970f994c0"
]
},
"outputId": "ee656cd9-b7eb-4684-a4db-737ac422fe91"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)lve/main/config.json: 0%| | 0.00/673 [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "a4e5fd02e6f14545912f0c6d2f5706e3"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading pytorch_model.bin: 0%| | 0.00/436M [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "57b98b51c71e4b3e9b33d0bd40c87309"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)okenizer_config.json: 0%| | 0.00/314 [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "544cec58b89c41648fac8e2748a03a7e"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)solve/main/vocab.txt: 0%| | 0.00/232k [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "4fade87fc571412c94dfd3251e26231e"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)/main/tokenizer.json: 0%| | 0.00/712k [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "6e86fd6a1b564a71b3c536e0a55fc269"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Downloading (…)cial_tokens_map.json: 0%| | 0.00/125 [00:00, ?B/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "2bef2d792e464deeb8d3847d5848215e"
}
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"text1 = \"\"\"{}\"\"\".format(transcript[0])[14:]\n",
"text1"
],
"metadata": {
"id": "hsJgLAI71dr_",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 209
},
"outputId": "e82ca799-3b30-476c-f2a4-f23a36c0d2a0"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'I heard you liked factories so I made you a factory inside a factory which inherits from an abstract Factory so it can create new factories but enough about programming in Java in this video we will learn about eight design patterns every developer should know in 1994 the gang of four released the holy book design patterns introducing 23 object-oriented design patterns falling into one of three buckets creational patterns structural patterns and behavioral patterns while some argue that it stated the fact that a 30 year old book is still being discussed definitely means something especially in a world where JavaScript Frameworks are going out of style faster than you can say JavaScript was a mistake anyways let\\'s start with our first creational pattern the factory imagine that you want a burger but you don\\'t want to have to worry about getting all the ingredients and putting them together so instead you just order a burger well we can do the same thing with code if it takes a list of ingredients to create a burger we can instead use a factory which will instantiate the burger for us and return it to us whether it\\'s a cheeseburger a deluxe cheeseburger or even a vegan burger all we have to do is tell the factory what kind of burger we want just like you would do at a restaurant but be careful because this way you\\'ll never know what\\'s inside the Special Sauce we added a secret ingredient now alternatively if you want a little more control over how the sausage is made you can go with the builder pattern the idea is that if we want to make a burger we don\\'t immediately have to pass in all the parameters we can use a burger Builder instead we\\'ll have an individual method for adding each ingredient whether it\\'s a bun Patty or cheese each one will return a reference to the Builder and finally we\\'ll have a build method which will return the final product then we can instantiate a burger Builder add the Buns that we want the Patty that we want and the cheese that we want and we can chain these methods because remember each one will return a reference to the Builder finally we can build it and we have the exact burger that we want I\\'ve used this pattern a lot at Google with protocol buffers next we have the Singleton pattern and I\\'m not talking about my dating life a Singleton is just a class that can only have a single instance of it that\\'s instantiated it has many use cases for example maintaining a single copy of our application stay we would start by having a static instance variable let\\'s say in our app we want to know if a user is logged in or not but we won\\'t use the Constructor to actually instantiate the application State we\\'ll use a static method called get app stay which will first check if there\\'s already an existing instance of our application stay if not we\\'ll instantiate one if there already is though we\\'ll just return the existing instance we\\'ll never create more than one so now if we get our app State for the first time the logged in value will initially be false but if we get the app State again this will actually still be the first instance so if we modify the first instance and then print the logged in value for both of them they will both now be true this pattern can be useful so that multiple components in your app will have a a shared source of truth but how can all the components listen for updates in real time well that\\'s where the Observer comes in our first behavioral pattern I prefer to call it the pub sub pattern it\\'s widely used Beyond just object-oriented programming including in distributed systems let\\'s take YouTube for example every time I upload a video all of my subscribers get a notification including you because you\\'re subscribed right but in this case the YouTube channel is the subject AKA publisher which will be the source of events such as a new video being uploaded we might want multiple observers AKA subscribers to all be notified when these events happen in real time one way to implement this pattern is to have a YouTube channel class which maintains a list of its subscribers when a new user subscribes we add them to the list of subscribers when an event occurs we go through that list of subscribers and send the event data to each of them with a notification but we also have to define the subscriber interface which you can do with an abstract class or an interface different subscribers might implement this interface differently but for a YouTube user let\\'s say that we just want to print the notification that was received so then we can create a YouTube channel add a few subscribers and we only have to call notify once and all of the subscribers will receive the notification this is also extensible enough that a subscriber could be subscribed to multiple channels an iterator is a pretty simple pattern that defines how the values in an object can be iterated through in Python just defining an array and then iterating through it with the in keyword uses the built-in list iterator this way we don\\'t even have to index the array now for more complex objects like binary search trees or linked lists we can Define our own we can take a list node which just has a value and a next pointer and then a linked list which has a head pointer and a current pointer we can first Define the iterator with the inner function which will just set the current pointer to the head and then return a reference to the linked list to get the next value in the sequence we defined the next function if our current pointer is non-null we can get the value and then return it and also shift the current pointer but if we reach the end of the linked list we can send a signal that we\\'re going to stop iterating to test it out we can just initialize the linked list and iterate through it with the in keyword this is a much more simple interface than having to actually update pointers ourselves now if you want to modify or extend the behavior of a class without directly changing it you can go with the strategy pattern for example we can filter an array by removing positive values or we could filter it by removing all odd values these are two strategies but maybe in the future we want to add more and we want to follow the open closed principle well we can define a filter strategy create an implementation which will remove all negative values and an implementation which will remove all odd values and then at run time we can pass this strategy into our values object and to test it out all we have to do is pass in the strategy into our filter method and we\\'ll get our desired result this way we can add additional strategies without modifying our values class next we have the adapter our first structural pattern it\\'s analogous to the real world where we have a screw that\\'s too small to fit into a hole so instead we use an adapter which makes this screw compatible with the hole or maybe an example that you\\'re more familiar with we have a USB cable and a USB port we can plug in the USB cable which will directly fit into the port but instead if we have a micro USB cable it\\'s not compatible so instead we need a micro to USB adapter which extends from the USB clasp but is composed of a micro USB cable which will be plugged into the adapter we can override the plug USB method from our parent class if needed but it\\'s not in this case and then we can plug our micro USB cable into the adapter and then plug it into the port and it works just like a regular USB cable and our last pattern is the facade according to the dictionary a facade is an outward appearance that is maintained to conceal a Less Pleasant or credible reality in the program programming world the outward appearance is the class or interface we interact with as programmers and the Less Pleasant reality is hopefully the complexity that is hidden from us so a facade is simply a rapper class that can be used to abstract lower level details that we don\\'t want to have to worry about I\\'m surprised it even qualifies as a design pattern but some common examples might include HTTP clients that abstract away low-level Network details or even arrays yes a dynamic array like vectors in C plus plus or arraylists in Java are constantly being resized under the hood thankfully as programmers we rarely have to think about memory allocation though if you\\'re interested to learn more check out my newly released object-oriented design interview course we tackle some popular interview questions I\\'ve included video less since written articles and code for four languages and I\\'ll be sure to add additional lessons in the future thanks for watching and make sure to subscribe please\" metadata={\\'source\\': \\'tAuRQs_d9F8\\'}'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 16
}
]
},
{
"cell_type": "code",
"source": [
"context = text1\n",
"context"
],
"metadata": {
"id": "qUvq2H4rSk6s",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 209
},
"outputId": "a3bba76f-0baa-4fa2-ab84-3a2c6a7fb6e1"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'I heard you liked factories so I made you a factory inside a factory which inherits from an abstract Factory so it can create new factories but enough about programming in Java in this video we will learn about eight design patterns every developer should know in 1994 the gang of four released the holy book design patterns introducing 23 object-oriented design patterns falling into one of three buckets creational patterns structural patterns and behavioral patterns while some argue that it stated the fact that a 30 year old book is still being discussed definitely means something especially in a world where JavaScript Frameworks are going out of style faster than you can say JavaScript was a mistake anyways let\\'s start with our first creational pattern the factory imagine that you want a burger but you don\\'t want to have to worry about getting all the ingredients and putting them together so instead you just order a burger well we can do the same thing with code if it takes a list of ingredients to create a burger we can instead use a factory which will instantiate the burger for us and return it to us whether it\\'s a cheeseburger a deluxe cheeseburger or even a vegan burger all we have to do is tell the factory what kind of burger we want just like you would do at a restaurant but be careful because this way you\\'ll never know what\\'s inside the Special Sauce we added a secret ingredient now alternatively if you want a little more control over how the sausage is made you can go with the builder pattern the idea is that if we want to make a burger we don\\'t immediately have to pass in all the parameters we can use a burger Builder instead we\\'ll have an individual method for adding each ingredient whether it\\'s a bun Patty or cheese each one will return a reference to the Builder and finally we\\'ll have a build method which will return the final product then we can instantiate a burger Builder add the Buns that we want the Patty that we want and the cheese that we want and we can chain these methods because remember each one will return a reference to the Builder finally we can build it and we have the exact burger that we want I\\'ve used this pattern a lot at Google with protocol buffers next we have the Singleton pattern and I\\'m not talking about my dating life a Singleton is just a class that can only have a single instance of it that\\'s instantiated it has many use cases for example maintaining a single copy of our application stay we would start by having a static instance variable let\\'s say in our app we want to know if a user is logged in or not but we won\\'t use the Constructor to actually instantiate the application State we\\'ll use a static method called get app stay which will first check if there\\'s already an existing instance of our application stay if not we\\'ll instantiate one if there already is though we\\'ll just return the existing instance we\\'ll never create more than one so now if we get our app State for the first time the logged in value will initially be false but if we get the app State again this will actually still be the first instance so if we modify the first instance and then print the logged in value for both of them they will both now be true this pattern can be useful so that multiple components in your app will have a a shared source of truth but how can all the components listen for updates in real time well that\\'s where the Observer comes in our first behavioral pattern I prefer to call it the pub sub pattern it\\'s widely used Beyond just object-oriented programming including in distributed systems let\\'s take YouTube for example every time I upload a video all of my subscribers get a notification including you because you\\'re subscribed right but in this case the YouTube channel is the subject AKA publisher which will be the source of events such as a new video being uploaded we might want multiple observers AKA subscribers to all be notified when these events happen in real time one way to implement this pattern is to have a YouTube channel class which maintains a list of its subscribers when a new user subscribes we add them to the list of subscribers when an event occurs we go through that list of subscribers and send the event data to each of them with a notification but we also have to define the subscriber interface which you can do with an abstract class or an interface different subscribers might implement this interface differently but for a YouTube user let\\'s say that we just want to print the notification that was received so then we can create a YouTube channel add a few subscribers and we only have to call notify once and all of the subscribers will receive the notification this is also extensible enough that a subscriber could be subscribed to multiple channels an iterator is a pretty simple pattern that defines how the values in an object can be iterated through in Python just defining an array and then iterating through it with the in keyword uses the built-in list iterator this way we don\\'t even have to index the array now for more complex objects like binary search trees or linked lists we can Define our own we can take a list node which just has a value and a next pointer and then a linked list which has a head pointer and a current pointer we can first Define the iterator with the inner function which will just set the current pointer to the head and then return a reference to the linked list to get the next value in the sequence we defined the next function if our current pointer is non-null we can get the value and then return it and also shift the current pointer but if we reach the end of the linked list we can send a signal that we\\'re going to stop iterating to test it out we can just initialize the linked list and iterate through it with the in keyword this is a much more simple interface than having to actually update pointers ourselves now if you want to modify or extend the behavior of a class without directly changing it you can go with the strategy pattern for example we can filter an array by removing positive values or we could filter it by removing all odd values these are two strategies but maybe in the future we want to add more and we want to follow the open closed principle well we can define a filter strategy create an implementation which will remove all negative values and an implementation which will remove all odd values and then at run time we can pass this strategy into our values object and to test it out all we have to do is pass in the strategy into our filter method and we\\'ll get our desired result this way we can add additional strategies without modifying our values class next we have the adapter our first structural pattern it\\'s analogous to the real world where we have a screw that\\'s too small to fit into a hole so instead we use an adapter which makes this screw compatible with the hole or maybe an example that you\\'re more familiar with we have a USB cable and a USB port we can plug in the USB cable which will directly fit into the port but instead if we have a micro USB cable it\\'s not compatible so instead we need a micro to USB adapter which extends from the USB clasp but is composed of a micro USB cable which will be plugged into the adapter we can override the plug USB method from our parent class if needed but it\\'s not in this case and then we can plug our micro USB cable into the adapter and then plug it into the port and it works just like a regular USB cable and our last pattern is the facade according to the dictionary a facade is an outward appearance that is maintained to conceal a Less Pleasant or credible reality in the program programming world the outward appearance is the class or interface we interact with as programmers and the Less Pleasant reality is hopefully the complexity that is hidden from us so a facade is simply a rapper class that can be used to abstract lower level details that we don\\'t want to have to worry about I\\'m surprised it even qualifies as a design pattern but some common examples might include HTTP clients that abstract away low-level Network details or even arrays yes a dynamic array like vectors in C plus plus or arraylists in Java are constantly being resized under the hood thankfully as programmers we rarely have to think about memory allocation though if you\\'re interested to learn more check out my newly released object-oriented design interview course we tackle some popular interview questions I\\'ve included video less since written articles and code for four languages and I\\'ll be sure to add additional lessons in the future thanks for watching and make sure to subscribe please\" metadata={\\'source\\': \\'tAuRQs_d9F8\\'}'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 17
}
]
},
{
"cell_type": "code",
"source": [
"question = \"What are 23 object-oriented design patterns\"\n",
"question_answerer(question=question, context=context)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GHkLQH0QUGBC",
"outputId": "796e91ba-071d-4efb-8f90-413b1054a12e"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"{'score': 0.7022665143013,\n",
" 'start': 426,\n",
" 'end': 469,\n",
" 'answer': 'structural patterns and behavioral patterns'}"
]
},
"metadata": {},
"execution_count": 18
}
]
},
{
"cell_type": "code",
"source": [
"!pip install gradio -q"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "KlhjSa0WnKmd",
"outputId": "618184b1-b57e-4e98-8d8b-c0be9620ac2d"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m74.5/74.5 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import gradio as gr\n",
"index = None"
],
"metadata": {
"id": "AG4GidbqnLbc"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def build_the_bot(input_text):\n",
" loader = YoutubeLoader.from_youtube_url(\"{}\".format(input_text))\n",
" transcript = loader.load()\n",
" texts = text_splitter.split_documents(transcript)\n",
" text1 = \"\"\"{}\"\"\".format(transcript[0])[14:]\n",
" context = text1\n",
" return('Bot Build Successfull!!!')"
],
"metadata": {
"id": "IBqux17YnQd2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def build_the_bot2(input_text):\n",
" loader = YoutubeLoader.from_youtube_url(\"{}\".format(input_text))\n",
" transcript = loader.load()\n",
" texts = text_splitter.split_documents(transcript)\n",
" text1 = \"\"\"{}\"\"\".format(transcript[0])[14:]\n",
" context = text1\n",
" return('Summary goes here!')"
],
"metadata": {
"id": "B4C25tKUxp8R"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def chat(chat_history, user_input):\n",
"\n",
" output = question_answerer(question=user_input, context=context)\n",
" bot_response = output[\"answer\"]\n",
" #print(bot_response)\n",
" response = \"\"\n",
" for letter in ''.join(bot_response): #[bot_response[i:i+1] for i in range(0, len(bot_response), 1)]:\n",
" response += letter + \"\"\n",
" yield chat_history + [(user_input, response)]"
],
"metadata": {
"id": "XxwLjy7updd6"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"with gr.Blocks() as demo:\n",
" gr.Markdown('# YouTube Q&A and Summarizer Bot')\n",
" with gr.Tab(\"Input URL of video you wanna load -\"):\n",
" text_input = gr.Textbox()\n",
" text_output = gr.Textbox()\n",
" text_button1 = gr.Button(\"Build the Bot!!!\")\n",
" text_button1.click(build_the_bot, text_input, text_output)\n",
" text_button2 = gr.Button(\"Summarize...\")\n",
" text_button2.click(build_the_bot2, text_input, text_output)\n",
" with gr.Tab(\"Knowledge Base -\"):\n",
"# inputbox = gr.Textbox(\"Input your text to build a Q&A Bot here.....\")\n",
" chatbot = gr.Chatbot()\n",
" message = gr.Textbox (\"What is this document about?\")\n",
" message.submit(chat, [chatbot, message], chatbot)\n",
"\n",
"demo.queue().launch()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 646
},
"id": "3_r6tXPHrXkR",
"outputId": "1a4a8f0c-2930-4ee0-8af2-eedfe85be393"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
"\n",
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
"Running on public URL: https://e0378c69f28a520598.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": [
""
]
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": []
},
"metadata": {},
"execution_count": 32
}
]
}
]
}