import gradio as gr import tensorflow as tf from PIL import Image import numpy as np # Lade das Modell model = tf.keras.models.load_model("fruit_classifier_model.keras") class_names = ['Apple', 'Banana', 'Grapes', 'Kiwi', 'Orange', 'Pineapple', 'Strawberries'] def classify_fruit(image): image = Image.fromarray(image).resize((224, 224)) image = np.array(image) / 255.0 image = np.expand_dims(image, axis=0) predictions = model.predict(image)[0] results = {class_name: float(predictions[i]) for i, class_name in enumerate(class_names)} return results interface = gr.Interface( fn=classify_fruit, inputs=gr.Image(), outputs=gr.Label(num_top_classes=3), live=True ) if __name__ == "__main__": interface.launch()