arjun.a
range data
5aefcf4
raw
history blame
22.9 kB
Ticket Name: Compiler/TDA2EVM5777: Linux/TDA2: libdrm test
Query Text:
Part Number: TDA2EVM5777 Tool/software: TI C/C++ Compiler Hi, i download the github.com/.../modeset-double-buffered.c modify modeset_draw function to remove frame copy and only call drmModeSetCrtc i use sdk( Processor SDK Linux Automotive 3.04.00.03) to cross compile measurement run time as below , about 16.8ms i found kernel drm_mode_setcrtc spend about 14ms How can i improve and reduce time ? Regards, Erwin. drivers/gpu/drm/drm_crtc.c [ 26.131660] lock,find 2 us [ 26.136438] mode vail 3 us [ 26.139154] connector 1 us [ 26.156455] set 14587 us => mutex lock [ 26.158998] free 3 us [ 26.161276] gpio 3 us,total: 14599 us [ 26.165037] lock,find 3 us [ 26.199348] lock,find 2 us [ 26.202064] mode vail 4 us [ 26.204864] connector 1 us [ 26.223116] set 15539 us => mutex lock [ 26.225681] free 3 us [ 26.227962] gpio 2 us,total: 15551 us modeset-double-buffered.c /*
* modeset - DRM Double-Buffered Modesetting Example
*
* Written 2012 by David Herrmann <dh.herrmann@googlemail.com>
* Dedicated to the Public Domain.
*/
/*
* DRM Double-Buffered Modesetting Howto
* This example extends the modeset.c howto and introduces double-buffering.
* When drawing a new frame into a framebuffer, we should always draw into an
* unused buffer and not into the front buffer. If we draw into the front
* buffer, we might have drawn half the frame when the display-controller starts
* scanning out the next frame. Hence, we see flickering on the screen.
* The technique to avoid this is called double-buffering. We have two
* framebuffers, the front buffer which is currently used for scanout and a
* back-buffer that is used for drawing operations. When a frame is done, we
* simply swap both buffers.
* Swapping does not mean copying data, instead, only the pointers to the
* buffers are swapped.
*
* Please read modeset.c before reading this file as most of the functions stay
* the same. Only the differences are highlighted here.
* Also note that triple-buffering or any other number of buffers can be easily
* implemented by following the scheme here. However, in this example we limit
* the number of buffers to 2 so it is easier to follow.
*/
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>
#include <xf86drm.h>
#include <xf86drmMode.h>
struct modeset_buf;
struct modeset_dev;
static int modeset_find_crtc(int fd, drmModeRes *res, drmModeConnector *conn,
struct modeset_dev *dev);
static int modeset_create_fb(int fd, struct modeset_buf *buf);
static void modeset_destroy_fb(int fd, struct modeset_buf *buf);
static int modeset_setup_dev(int fd, drmModeRes *res, drmModeConnector *conn,
struct modeset_dev *dev);
static int modeset_open(int *out, const char *node);
static int modeset_prepare(int fd);
static void modeset_draw(int fd);
static void modeset_cleanup(int fd);
/*
* modeset_open() stays the same as before.
*/
static int fb_id_left=0;
static int fb_id_right=0;
static int modeset_open(int *out, const char *node)
{
int fd, ret;
uint64_t has_dumb;
fd = open(node, O_RDWR | O_CLOEXEC);
if (fd < 0) {
ret = -errno;
fprintf(stderr, "cannot open '%s': %m\n", node);
return ret;
}
if (drmGetCap(fd, DRM_CAP_DUMB_BUFFER, &has_dumb) < 0 ||
!has_dumb) {
fprintf(stderr, "drm device '%s' does not support dumb buffers\n",
node);
close(fd);
return -EOPNOTSUPP;
}
*out = fd;
return 0;
}
/*
* Previously, we used the modeset_dev objects to hold buffer informations, too.
* Technically, we could have split them but avoided this to make the
* example simpler.
* However, in this example we need 2 buffers. One back buffer and one front
* buffer. So we introduce a new structure modeset_buf which contains everything
* related to a single buffer. Each device now gets an array of two of these
* buffers.
* Each buffer consists of width, height, stride, size, handle, map and fb-id.
* They have the same meaning as before.
*
* Each device also gets a new integer field: front_buf. This field contains the
* index of the buffer that is currently used as front buffer / scanout buffer.
* In our example it can be 0 or 1. We flip it by using XOR:
* dev->front_buf ^= dev->front_buf
*
* Everything else stays the same.
*/
struct modeset_buf {
uint32_t width;
uint32_t height;
uint32_t stride;
uint32_t size;
uint32_t handle;
uint8_t *map;
uint32_t fb;
};
struct modeset_dev {
struct modeset_dev *next;
unsigned int front_buf;
struct modeset_buf bufs[2];
drmModeModeInfo mode;
uint32_t conn;
uint32_t crtc;
drmModeCrtc *saved_crtc;
};
static struct modeset_dev *modeset_list = NULL;
static struct modeset_dev *modeset_hdmi = NULL;
/*
* modeset_prepare() stays the same.
*/
static int modeset_prepare(int fd)
{
drmModeRes *res;
drmModeConnector *conn;
unsigned int i;
struct modeset_dev *dev;
int ret;
/* retrieve resources */
res = drmModeGetResources(fd);
if (!res) {
fprintf(stderr, "cannot retrieve DRM resources (%d): %m\n",
errno);
return -errno;
}
/* iterate all connectors */
for (i = 0; i < res->count_connectors; ++i) {
/* get information for each connector */
conn = drmModeGetConnector(fd, res->connectors[i]);
if (!conn) {
fprintf(stderr, "cannot retrieve DRM connector %u:%u (%d): %m\n",
i, res->connectors[i], errno);
continue;
}
/* create a device structure */
dev = malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
dev->conn = conn->connector_id;
/* call helper function to prepare this connector */
ret = modeset_setup_dev(fd, res, conn, dev);
if (ret) {
if (ret != -ENOENT) {
errno = -ret;
fprintf(stderr, "cannot setup device for connector %u:%u (%d): %m\n",
i, res->connectors[i], errno);
}
free(dev);
drmModeFreeConnector(conn);
continue;
}
/* free connector data and link device into global list */
drmModeFreeConnector(conn);
dev->next = modeset_list;
modeset_list = dev;
if(!modeset_hdmi){
printf("debug set modeset_hdmi ..\n");
modeset_hdmi = modeset_list;
}
}
/* free resources again */
drmModeFreeResources(res);
return 0;
}
/*
* modeset_setup_dev() sets up all resources for a single device. It mostly
* stays the same, but one thing changes: We allocate two framebuffers instead
* of one. That is, we call modeset_create_fb() twice.
* We also copy the width/height information into both framebuffers so
* modeset_create_fb() can use them without requiring a pointer to modeset_dev.
*/
static int modeset_setup_dev(int fd, drmModeRes *res, drmModeConnector *conn,
struct modeset_dev *dev)
{
int ret;
/* check if a monitor is connected */
if (conn->connection != DRM_MODE_CONNECTED) {
fprintf(stderr, "ignoring unused connector %u\n",
conn->connector_id);
return -ENOENT;
}
/* check if there is at least one valid mode */
if (conn->count_modes == 0) {
fprintf(stderr, "no valid mode for connector %u\n",
conn->connector_id);
return -EFAULT;
}
/* copy the mode information into our device structure and into both
* buffers */
memcpy(&dev->mode, &conn->modes[0], sizeof(dev->mode));
dev->bufs[0].width = conn->modes[0].hdisplay;
dev->bufs[0].height = conn->modes[0].vdisplay;
dev->bufs[1].width = conn->modes[0].hdisplay;
dev->bufs[1].height = conn->modes[0].vdisplay;
fprintf(stderr, "mode for connector %u is %ux%u\n",
conn->connector_id, dev->bufs[0].width, dev->bufs[0].height);
/* find a crtc for this connector */
ret = modeset_find_crtc(fd, res, conn, dev);
if (ret) {
fprintf(stderr, "no valid crtc for connector %u\n",
conn->connector_id);
return ret;
}
/* create framebuffer #1 for this CRTC */
ret = modeset_create_fb(fd, &dev->bufs[0]);
//printf("\n call modeset_create_fb, bufs[0].fd:%x, ret:%d\n",dev->bufs[0].fb,ret);
if (ret) {
fprintf(stderr, "cannot create framebuffer for connector %u\n",
conn->connector_id);
return ret;
}
fb_id_left = dev->bufs[0].fb;
printf("app set fb_id_left:%x\n",fb_id_left);
/* create framebuffer #2 for this CRTC */
ret = modeset_create_fb(fd, &dev->bufs[1]);
//printf("\n call modeset_create_fb, bufs[1].fb:%x, ret:%d\n",dev->bufs[1].fb,ret);
if (ret) {
fprintf(stderr, "cannot create framebuffer for connector %u\n",
conn->connector_id);
modeset_destroy_fb(fd, &dev->bufs[0]);
return ret;
}
fb_id_right = dev->bufs[1].fb;
printf("app set fb_id_right:%x\n",fb_id_right);
return 0;
}
/*
* modeset_find_crtc() stays the same.
*/
static int modeset_find_crtc(int fd, drmModeRes *res, drmModeConnector *conn,
struct modeset_dev *dev)
{
drmModeEncoder *enc;
unsigned int i, j;
int32_t crtc;
struct modeset_dev *iter;
/* first try the currently conected encoder+crtc */
if (conn->encoder_id)
enc = drmModeGetEncoder(fd, conn->encoder_id);
else
enc = NULL;
if (enc) {
if (enc->crtc_id) {
crtc = enc->crtc_id;
for (iter = modeset_list; iter; iter = iter->next) {
if (iter->crtc == crtc) {
crtc = -1;
break;
}
}
if (crtc >= 0) {
drmModeFreeEncoder(enc);
dev->crtc = crtc;
return 0;
}
}
drmModeFreeEncoder(enc);
}
/* If the connector is not currently bound to an encoder or if the
* encoder+crtc is already used by another connector (actually unlikely
* but lets be safe), iterate all other available encoders to find a
* matching CRTC. */
for (i = 0; i < conn->count_encoders; ++i) {
enc = drmModeGetEncoder(fd, conn->encoders[i]);
if (!enc) {
fprintf(stderr, "cannot retrieve encoder %u:%u (%d): %m\n",
i, conn->encoders[i], errno);
continue;
}
/* iterate all global CRTCs */
for (j = 0; j < res->count_crtcs; ++j) {
/* check whether this CRTC works with the encoder */
if (!(enc->possible_crtcs & (1 << j)))
continue;
/* check that no other device already uses this CRTC */
crtc = res->crtcs[j];
for (iter = modeset_list; iter; iter = iter->next) {
if (iter->crtc == crtc) {
crtc = -1;
break;
}
}
/* we have found a CRTC, so save it and return */
if (crtc >= 0) {
drmModeFreeEncoder(enc);
dev->crtc = crtc;
return 0;
}
}
drmModeFreeEncoder(enc);
}
fprintf(stderr, "cannot find suitable CRTC for connector %u\n",
conn->connector_id);
return -ENOENT;
}
/*
* modeset_create_fb() is mostly the same as before. Buf instead of writing the
* fields of a modeset_dev, we now require a buffer pointer passed as @buf.
* Please note that buf->width and buf->height are initialized by
* modeset_setup_dev() so we can use them here.
*/
static int modeset_create_fb(int fd, struct modeset_buf *buf)
{
struct drm_mode_create_dumb creq;
struct drm_mode_destroy_dumb dreq;
struct drm_mode_map_dumb mreq;
int ret;
/* create dumb buffer */
memset(&creq, 0, sizeof(creq));
creq.width = buf->width;
creq.height = buf->height;
creq.bpp = 32;
ret = drmIoctl(fd, DRM_IOCTL_MODE_CREATE_DUMB, &creq);
if (ret < 0) {
fprintf(stderr, "cannot create dumb buffer (%d): %m\n",
errno);
return -errno;
}
buf->stride = creq.pitch;
buf->size = creq.size;
buf->handle = creq.handle;
/* create framebuffer object for the dumb-buffer */
ret = drmModeAddFB(fd, buf->width, buf->height, 24, 32, buf->stride,
buf->handle, &buf->fb);
if (ret) {
fprintf(stderr, "cannot create framebuffer (%d): %m\n",
errno);
ret = -errno;
goto err_destroy;
}
/* prepare buffer for memory mapping */
memset(&mreq, 0, sizeof(mreq));
mreq.handle = buf->handle;
ret = drmIoctl(fd, DRM_IOCTL_MODE_MAP_DUMB, &mreq);
if (ret) {
fprintf(stderr, "cannot map dumb buffer (%d): %m\n",
errno);
ret = -errno;
goto err_fb;
}
/* perform actual memory mapping */
buf->map = mmap(0, buf->size, PROT_READ | PROT_WRITE, MAP_SHARED,
fd, mreq.offset);
if (buf->map == MAP_FAILED) {
fprintf(stderr, "cannot mmap dumb buffer (%d): %m\n",
errno);
ret = -errno;
goto err_fb;
}
/* clear the framebuffer to 0 */
memset(buf->map, 0, buf->size);
return 0;
err_fb:
drmModeRmFB(fd, buf->fb);
err_destroy:
memset(&dreq, 0, sizeof(dreq));
dreq.handle = buf->handle;
drmIoctl(fd, DRM_IOCTL_MODE_DESTROY_DUMB, &dreq);
return ret;
}
/*
* modeset_destroy_fb() is a new function. It does exactly the reverse of
* modeset_create_fb() and destroys a single framebuffer. The modeset.c example
* used to do this directly in modeset_cleanup().
* We simply unmap the buffer, remove the drm-FB and destroy the memory buffer.
*/
static void modeset_destroy_fb(int fd, struct modeset_buf *buf)
{
struct drm_mode_destroy_dumb dreq;
/* unmap buffer */
munmap(buf->map, buf->size);
/* delete framebuffer */
drmModeRmFB(fd, buf->fb);
/* delete dumb buffer */
memset(&dreq, 0, sizeof(dreq));
dreq.handle = buf->handle;
drmIoctl(fd, DRM_IOCTL_MODE_DESTROY_DUMB, &dreq);
}
/*
* main() also stays almost exactly the same as before. We only need to change
* the way that we initially set the CRTCs. Instead of using the buffer
* information from modeset_dev, we now use dev->bufs[iter->front_buf] to get
* the current front-buffer and use this framebuffer for drmModeSetCrtc().
*/
int main(int argc, char **argv)
{
int ret, fd;
const char *card;
struct modeset_dev *iter;
struct modeset_buf *buf;
/* check which DRM device to open */
if (argc > 1)
card = argv[1];
else
card = "/dev/dri/card0";
fprintf(stderr, "using card '%s'\n", card);
/* open the DRM device */
ret = modeset_open(&fd, card);
if (ret)
goto out_return;
/* prepare all connectors and CRTCs */
ret = modeset_prepare(fd);
if (ret)
goto out_close;
/* perform actual modesetting on each found connector+CRTC */
for (iter = modeset_list; iter; iter = iter->next) {
iter->saved_crtc = drmModeGetCrtc(fd, iter->crtc);
buf = &iter->bufs[iter->front_buf];
ret = drmModeSetCrtc(fd, iter->crtc, buf->fb, 0, 0,
&iter->conn, 1, &iter->mode);
if (ret)
fprintf(stderr, "cannot set CRTC for connector %u (%d): %m\n",
iter->conn, errno);
}
/* draw some colors for 5seconds */
modeset_draw(fd);
/* cleanup everything */
modeset_cleanup(fd);
ret = 0;
out_close:
close(fd);
out_return:
if (ret) {
errno = -ret;
fprintf(stderr, "modeset failed with error %d: %m\n", errno);
} else {
fprintf(stderr, "exiting\n");
}
return ret;
}
/*
* A short helper function to compute a changing color value. No need to
* understand it.
*/
static uint8_t next_color(bool *up, uint8_t cur, unsigned int mod)
{
uint8_t next;
next = cur + (*up ? 1 : -1) * (rand() % mod);
if ((*up && next < cur) || (!*up && next > cur)) {
*up = !*up;
next = cur;
}
return next;
}
/*
* modeset_draw() is the place where things change. The render-logic is the same
* and we still draw a solid-color on the whole screen. However, we now have two
* buffers and need to flip between them.
*
* So before drawing into a framebuffer, we need to find the back-buffer.
* Remember, dev->font_buf is the index of the front buffer, so
* dev->front_buf ^ 1 is the index of the back buffer. We simply use
* dev->bufs[dev->front_buf ^ 1] to get the back-buffer and draw into it.
*
* After we finished drawing, we need to flip the buffers. We do this with the
* same call as we initially set the CRTC: drmModeSetCrtc(). However, we now
* pass the back-buffer as new framebuffer as we want to flip them.
* The only thing left to do is to change the dev->front_buf index to point to
* the new back-buffer (which was previously the front buffer).
* We then sleep for a short time period and start drawing again.
*
* If you run this example, you will notice that there is almost no flickering,
* anymore. The buffers are now swapped as a whole so each new frame shows
* always the whole new image. If you look carefully, you will notice that the
* modeset.c example showed many screen corruptions during redraw-cycles.
*
* However, this example is still not perfect. Imagine the display-controller is
* currently scanning out a new image and we call drmModeSetCrtc()
* simultaneously. It will then have the same effect as if we used a single
* buffer and we get some tearing. But, the chance that this happens is a lot
* less likely as with a single-buffer. This is because there is a long period
* between each frame called vertical-blank where the display-controller does
* not perform a scanout. If we swap the buffers in this period, we have the
* guarantee that there will be no tearing. See the modeset-vsync.c example if
* you want to know how you can guarantee that the swap takes place at a
* vertical-sync.
*/
static void modeset_draw(int fd)
{
uint8_t r, g, b;
bool r_up, g_up, b_up;
unsigned int i, j, k, off;
struct modeset_dev *iter;
struct modeset_buf *buf,*buf_left,*buf_right;
int ret;
int id_left=1;
struct timeval tvBegin;
struct timeval tvNow;
struct timeval tvTT;
unsigned int nTimeTest = 0; /* usec */
if( fb_id_left == (modeset_hdmi->bufs[0]).fb ){
buf_left = &modeset_hdmi->bufs[0];
buf_right = &modeset_hdmi->bufs[1];
}else{
buf_left = &modeset_hdmi->bufs[1];
buf_right = &modeset_hdmi->bufs[0];
}
printf("fb_id_left : %x\n",fb_id_left);
printf("bufs[0].fb : %x\n",modeset_hdmi->bufs[0].fb);
printf("bufs[1].fb : %x\n",modeset_hdmi->bufs[1].fb);
gettimeofday(&tvBegin,NULL);
r = 0; g = 255; b = 0;
for (j = 0; j < buf_left->height; ++j) {
for (k = 0; k < buf_left->width; ++k) {
off = buf_left->stride * j + k * 4;
*(uint32_t*)&buf_left->map[off] =
(r << 16) | (g << 8) | b;
}
}
gettimeofday(&tvNow,NULL);
nTimeTest = (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 +
(tvNow.tv_usec - tvBegin.tv_usec);
printf("buf0 tvBegin(sec:%8u , usec:%8u)\n",tvBegin.tv_sec,tvBegin.tv_usec);
printf("buf0 tvNow(sec:%8u , usec:%8u)\n",tvNow.tv_sec,tvNow.tv_usec);
printf("buf0 diff %8u, height:%d,width:%d\n",nTimeTest,buf_right->height,buf_right->width);
gettimeofday(&tvBegin,NULL);
r = 255; g = 0; b = 0;
for (j = 0; j < buf_right->height; ++j) {
for (k = 0; k < buf_right->width; ++k) {
off = buf_right->stride * j + k * 4;
*(uint32_t*)&buf_right->map[off] =
(r << 16) | (g << 8) | b;
}
}
gettimeofday(&tvNow,NULL);
nTimeTest = (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 +
(tvNow.tv_usec - tvBegin.tv_usec);
printf("buf1 tvBegin(sec:%8u , usec:%8u)\n",tvBegin.tv_sec,tvBegin.tv_usec);
printf("buf1 tvNow(sec:%8u , usec:%8u)\n",tvNow.tv_sec,tvNow.tv_usec);
printf("buf1 diff %8u, height:%d,width:%d\n",nTimeTest,buf_right->height,buf_right->width);
#if 1
id_left = 1;
for(i=0; i<101; ++i){
if(id_left){
// r = 0; g = 255; b = 0;
buf = buf_left;
id_left = 0;
}else{
// r = 255; g = 0; b = 0;
buf = buf_right;
id_left = 1;
}
/* test 1
33ms, delay 10ms
for (j = 0; j < buf->height; ++j) {
for (k = 0; k < buf->width; ++k) {
off = buf->stride * j + k * 4;
*(uint32_t*)&buf->map[off] =
(r << 16) | (g << 8) | b;
}
}
*/
/* test 2
* remove copy buf, 16.8ms, delay 10ms*/
/* test 3
* remove copy buf, 16.8ms, delay 1ms*/
//printf("drmModeSetCrtc fb_id:%x\n",buf->fb);
gettimeofday(&tvBegin,NULL);
ret = drmModeSetCrtc(fd, modeset_hdmi->crtc, buf->fb, 0, 0,
&modeset_hdmi->conn, 1, &modeset_hdmi->mode);
gettimeofday(&tvNow,NULL);
if(i >= 1){
nTimeTest += (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 + (tvNow.tv_usec - tvBegin.tv_usec);
}
if (ret){
fprintf(stderr, "cannot flip CRTC for connector %u (%d): %m\n",
modeset_hdmi->conn, errno);
}
}
printf("crtc diff %8u\n",nTimeTest);
return;
#endif
srand(time(NULL));
r = rand() % 0xff;
g = rand() % 0xff;
b = rand() % 0xff;
r_up = g_up = b_up = true;
for (i = 0; i < 50; ++i) {
r = next_color(&r_up, r, 20);
g = next_color(&g_up, g, 10);
b = next_color(&b_up, b, 5);
for (iter = modeset_list; iter; iter = iter->next) {
buf = &iter->bufs[iter->front_buf ^ 1];
for (j = 0; j < buf->height; ++j) {
for (k = 0; k < buf->width; ++k) {
off = buf->stride * j + k * 4;
*(uint32_t*)&buf->map[off] =
(r << 16) | (g << 8) | b;
}
}
ret = drmModeSetCrtc(fd, iter->crtc, buf->fb, 0, 0,
&iter->conn, 1, &iter->mode);
if (ret)
fprintf(stderr, "cannot flip CRTC for connector %u (%d): %m\n",
iter->conn, errno);
else
iter->front_buf ^= 1;
}
usleep(100000);
}
}
/*
* modeset_cleanup() stays the same as before. But it now calls
* modeset_destroy_fb() instead of accessing the framebuffers directly.
*/
static void modeset_cleanup(int fd)
{
struct modeset_dev *iter;
while (modeset_list) {
/* remove from global list */
iter = modeset_list;
modeset_list = iter->next;
/* restore saved CRTC configuration */
drmModeSetCrtc(fd,
iter->saved_crtc->crtc_id,
iter->saved_crtc->buffer_id,
iter->saved_crtc->x,
iter->saved_crtc->y,
&iter->conn,
1,
&iter->saved_crtc->mode);
drmModeFreeCrtc(iter->saved_crtc);
/* destroy framebuffers */
modeset_destroy_fb(fd, &iter->bufs[1]);
modeset_destroy_fb(fd, &iter->bufs[0]);
/* free allocated memory */
free(iter);
}
}
/*
* This was a very short extension to the basic modesetting example that shows
* how double-buffering is implemented. Double-buffering is the de-facto
* standard in any graphics application so any other example will be based on
* this. It is important to understand the ideas behind it as the code is pretty
* easy and short compared to modeset.c.
*
* Double-buffering doesn't solve all problems. Vsync'ed page-flips solve most
* of the problems that still occur, but has problems on it's own (see
* modeset-vsync.c for a discussion).
*
* If you want more code, I can recommend reading the source-code of:
* - plymouth (which uses dumb-buffers like this example; very easy to understand)
* - kmscon (which uses libuterm to do this)
* - wayland (very sophisticated DRM renderer; hard to understand fully as it
* uses more complicated techniques like DRM planes)
* - xserver (very hard to understand as it is split across many files/projects)
*
* Any feedback is welcome. Feel free to use this code freely for your own
* documentation or projects.
*
* - Hosted on http://github.com/dvdhrm/docs
* - Written by David Herrmann <dh.herrmann@googlemail.com>
*/
drm_crtc.c
Responses:
drmModeSetCrtc is a blocking call and will wait for VSYNC. What is the FPS of your display?
i used TDA2EVM5777 board HDMI display it is 60FPS about 16.6ms Connectors: id encoder status name size (mm) modes encoders 32 31 connected HDMI-A-1 0x0 30 31 modes: name refresh (Hz) hdisp hss hse htot vdisp vss vse vtot) 1024x768 60 1024 1048 1184 1344 768 772 777 806 flags: phsync, nvsync; type: preferred, driver