medical-chatbot / app_2.py
ihkaraman's picture
Rename app.py to app_2.py
7676918 verified
raw
history blame
1.81 kB
import gradio as gr
from huggingface_hub import InferenceClient
# client = InferenceClient("ruslanmv/Medical-Llama3-8B")
client = InferenceClient("microsoft/BioGPT-Large-PubMedQA")
# client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
# cemilcelik/distilgpt2_pubmed
# microsoft/biogpt
# microsoft/BioGPT-Large
# BioGPT-Large-PubMedQA
# basic "mistralai/Mistral-7B-Instruct-v0.3"
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a medical chatbot that helps doctors and pathologists with pathological issues. Be concise and answer the questions with given information.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()